1887

Abstract

Immediate-early protein ICP0 of herpes simplex virus type 1 (HSV-1) is important for the regulation of lytic and latent viral infection. Like the related proteins expressed by other alphaherpesviruses, ICP0 has a zinc-stabilized RING finger domain that confers E3 ubiquitin ligase activity. This domain is essential for the core functions of ICP0 and its activity leads to the degradation of a number of cellular proteins, some of which are involved in cellular defences that restrict viral infection. The article reviews recent advances in ICP0-related research, with an emphasis on the mechanisms by which ICP0 and related proteins counteract antiviral restriction and the roles in this process of cellular nuclear substructures known as ND10 or PML nuclear bodies. We also summarize recent advances in the understanding of the biochemical aspects of ICP0 activity. These studies highlight the importance of the SUMO conjugation pathway in both intrinsic resistance to HSV-1 infection and in substrate targeting by ICP0. The topics discussed in this review are relevant not only to HSV-1 infection, but also to cellular intrinsic resistance against herpesviruses more generally and the mechanisms by which viruses can evade this restriction.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.048900-0
2013-03-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/jgv/94/3/465.html?itemId=/content/journal/jgv/10.1099/vir.0.048900-0&mimeType=html&fmt=ahah

References

  1. Adler M., Tavalai N., Müller R., Stamminger T. 2011; Human cytomegalovirus immediate-early gene expression is restricted by the nuclear domain 10 component Sp100. J Gen Virol 92:1532–1538 [View Article][PubMed]
    [Google Scholar]
  2. Antrobus R., Boutell C. 2008; Identification of a novel higher molecular weight isoform of USP7/HAUSP that interacts with the herpes simplex virus type-1 immediate early protein ICP0. Virus Res 137:64–71 [View Article][PubMed]
    [Google Scholar]
  3. Arthur J. L., Scarpini C. G., Connor V., Lachmann R. H., Tolkovsky A. M., Efstathiou S. 2001; Herpes simplex virus type 1 promoter activity during latency establishment, maintenance, and reactivation in primary dorsal root neurons in vitro. J Virol 75:3885–3895 [View Article][PubMed]
    [Google Scholar]
  4. Barlow P. N., Luisi B., Milner A., Elliott M., Everett R. 1994; Structure of the C3HC4 domain by 1H-nuclear magnetic resonance spectroscopy. A new structural class of zinc-finger. J Mol Biol 237:201–211 [View Article][PubMed]
    [Google Scholar]
  5. Bieniasz P. D. 2004; Intrinsic immunity: a front-line defense against viral attack. Nat Immunol 5:1109–1115 [View Article][PubMed]
    [Google Scholar]
  6. Boggio R., Colombo R., Hay R. T., Draetta G. F., Chiocca S. 2004; A mechanism for inhibiting the SUMO pathway. Mol Cell 16:549–561 [View Article][PubMed]
    [Google Scholar]
  7. Boutell C., Sadis S., Everett R. D. 2002; Herpes simplex virus type 1 immediate-early protein ICP0 and is isolated RING finger domain act as ubiquitin E3 ligases in vitro. J Virol 76:841–850 [View Article][PubMed]
    [Google Scholar]
  8. Boutell C., Canning M., Orr A., Everett R. D. 2005; Reciprocal activities between herpes simplex virus type 1 regulatory protein ICP0, a ubiquitin E3 ligase, and ubiquitin-specific protease USP7. J Virol 79:12342–12354 [View Article][PubMed]
    [Google Scholar]
  9. Boutell C., Everett R., Hilliard J., Schaffer P., Orr A., Davido D. 2008; Herpes simplex virus type 1 ICP0 phosphorylation mutants impair the E3 ubiquitin ligase activity of ICP0 in a cell type-dependent manner. J Virol 82:10647–10656 [View Article][PubMed]
    [Google Scholar]
  10. Boutell C., Cuchet-Lourenço D., Vanni E., Orr A., Glass M., McFarlane S., Everett R. D. 2011; A viral ubiquitin ligase has substrate preferential SUMO targeted ubiquitin ligase activity that counteracts intrinsic antiviral defence. PLoS Pathog 7:e1002245 [View Article][PubMed]
    [Google Scholar]
  11. Boyer-Guittaut M., Birsoy K., Potel C., Elliott G., Jaffray E., Desterro J. M., Hay R. T., Oelgeschläger T. 2005; SUMO-1 modification of human transcription factor (TF) IID complex subunits: inhibition of TFIID promoter-binding activity through SUMO-1 modification of hsTAF5. J Biol Chem 280:9937–9945 [View Article][PubMed]
    [Google Scholar]
  12. Bustos D., Bakalarski C. E., Yang Y., Peng J., Kirkpatrick D. S. 2012; Characterizing ubiquitination sites by peptide based immunoaffinity enrichment. Mol Cell Proteomics 11:1529–1540[PubMed] [CrossRef]
    [Google Scholar]
  13. Canning M., Boutell C., Parkinson J., Everett R. D. 2004; A RING finger ubiquitin ligase is protected from autocatalyzed ubiquitination and degradation by binding to ubiquitin-specific protease USP7. J Biol Chem 279:38160–38168 [View Article][PubMed]
    [Google Scholar]
  14. Cantrell S. R., Bresnahan W. A. 2006; Human cytomegalovirus (HCMV) UL82 gene product (pp71) relieves hDaxx-mediated repression of HCMV replication. J Virol 80:6188–6191 [View Article][PubMed]
    [Google Scholar]
  15. Catez F., Picard C., Held K., Gross S., Rousseau A., Theil D., Sawtell N., Labetoulle M., Lomonte P. 2012; HSV-1 genome subnuclear positioning and associations with host-cell PML-NBs and centromeres regulate LAT locus transcription during latency in neurons. PLoS Pathog 8:e1002852 [View Article][PubMed]
    [Google Scholar]
  16. Chaurushiya M. S., Lilley C. E., Aslanian A., Meisenhelder J., Scott D. C., Landry S., Ticau S., Boutell C., Yates J. R. III other authors 2012; Viral E3 ubiquitin ligase-mediated degradation of a cellular E3: viral mimicry of a cellular phosphorylation mark targets the RNF8 FHA domain. Mol Cell 46:79–90 [View Article][PubMed]
    [Google Scholar]
  17. Chelbi-Alix M. K., de Thé H. 1999; Herpes virus induced proteasome-dependent degradation of the nuclear bodies-associated PML and Sp100 proteins. Oncogene 18:935–941 [View Article][PubMed]
    [Google Scholar]
  18. Chen X., Li J., Mata M., Goss J., Wolfe D., Glorioso J. C., Fink D. J. 2000; Herpes simplex virus type 1 ICP0 protein does not accumulate in the nucleus of primary neurons in culture. J Virol 74:10132–10141 [View Article][PubMed]
    [Google Scholar]
  19. Cliffe A. R., Garber D. A., Knipe D. M. 2009; Transcription of the herpes simplex virus latency-associated transcript promotes the formation of facultative heterochromatin on lytic promoters. J Virol 83:8182–8190 [View Article][PubMed]
    [Google Scholar]
  20. Coleman H. M., Connor V., Cheng Z. S., Grey F., Preston C. M., Efstathiou S. 2008; Histone modifications associated with herpes simplex virus type 1 genomes during quiescence and following ICP0-mediated de-repression. J Gen Virol 89:68–77 [View Article][PubMed]
    [Google Scholar]
  21. Cuchet D., Sykes A., Nicolas A., Orr A., Murray J., Sirma H., Heeren J., Bartelt A., Everett R. D. 2011; PML isoforms I and II participate in PML-dependent restriction of HSV-1 replication. J Cell Sci 124:280–291 [View Article][PubMed]
    [Google Scholar]
  22. Cuchet-Lourenço D., Boutell C., Lukashchuk V., Grant K., Sykes A., Murray J., Orr A., Everett R. D. 2011; SUMO pathway dependent recruitment of cellular repressors to herpes simplex virus type 1 genomes. PLoS Pathog 7:e1002123 [View Article][PubMed]
    [Google Scholar]
  23. Cuchet-Lourenço D., Vanni E., Glass M., Orr A., Everett R. D. 2012; Herpes simplex virus 1 ubiquitin ligase ICP0 interacts with PML isoform I and induces its SUMO-independent degradation. J Virol 86:11209–11222 [View Article][PubMed]
    [Google Scholar]
  24. Danaher R. J., Jacob R. J., Steiner M. R., Allen W. R., Hill J. M., Miller C. S. 2005; Histone deacetylase inhibitors induce reactivation of herpes simplex virus type 1 in a latency-associated transcript-independent manner in neuronal cells. J Neurovirol 11:306–317 [View Article][PubMed]
    [Google Scholar]
  25. Daubeuf S., Singh D., Tan Y., Liu H., Federoff H. J., Bowers W. J., Tolba K. 2009; HSV ICP0 recruits USP7 to modulate TLR-mediated innate response. Blood 113:3264–3275 [View Article][PubMed]
    [Google Scholar]
  26. Davido D. J., von Zagorski W. F., Lane W. S., Schaffer P. A. 2005; Phosphorylation site mutations affect herpes simplex virus type 1 ICP0 function. J Virol 79:1232–1243 [View Article][PubMed]
    [Google Scholar]
  27. Delboy M. G., Nicola A. V. 2011; A pre-immediate-early role for tegument ICP0 in the proteasome-dependent entry of herpes simplex virus. J Virol 85:5910–5918 [View Article][PubMed]
    [Google Scholar]
  28. Delboy M. G., Siekavizza-Robles C. R., Nicola A. V. 2010; Herpes simplex virus tegument ICP0 is capsid associated, and its E3 ubiquitin ligase domain is important for incorporation into virions. J Virol 84:1637–1640 [View Article][PubMed]
    [Google Scholar]
  29. Deshaies R. J., Joazeiro C. A. 2009; RING domain E3 ubiquitin ligases. Annu Rev Biochem 78:399–434 [View Article][PubMed]
    [Google Scholar]
  30. Diao L., Zhang B., Fan J., Gao X., Sun S., Yang K., Xin D., Jin N., Geng Y., Wang C. 2005; Herpes virus proteins ICP0 and BICP0 can activate NF-κB by catalyzing IκBα ubiquitination. Cell Signal 17:217–229 [View Article][PubMed]
    [Google Scholar]
  31. Drané P., Ouararhni K., Depaux A., Shuaib M., Hamiche A. 2010; The death-associated protein DAXX is a novel histone chaperone involved in the replication-independent deposition of H3.3. Genes Dev 24:1253–1265 [View Article][PubMed]
    [Google Scholar]
  32. Du T., Zhou G., Khan S., Gu H., Roizman B. 2010; Disruption of HDAC/CoREST/REST repressor by dnREST reduces genome silencing and increases virulence of herpes simplex virus. Proc Natl Acad Sci U S A 107:15904–15909 [View Article][PubMed]
    [Google Scholar]
  33. Efstathiou S., Preston C. M. 2005; Towards an understanding of the molecular basis of herpes simplex virus latency. Virus Res 111:108–119 [View Article][PubMed]
    [Google Scholar]
  34. Elliott G., Hafezi W., Whiteley A., Bernard E. 2005; Deletion of the herpes simplex virus VP22-encoding gene (UL49) alters the expression, localization, and virion incorporation of ICP0. J Virol 79:9735–9745 [View Article][PubMed]
    [Google Scholar]
  35. Everett R. D. 1989; Construction and characterization of herpes simplex virus type 1 mutants with defined lesions in immediate early gene 1. J Gen Virol 70:1185–1202 [View Article][PubMed]
    [Google Scholar]
  36. Everett R. D. 2000; ICP0 induces the accumulation of colocalizing conjugated ubiquitin. J Virol 74:9994–10005 [View Article][PubMed]
    [Google Scholar]
  37. Everett R. D. 2001; DNA viruses and viral proteins that interact with PML nuclear bodies. Oncogene 20:7266–7273 [View Article][PubMed]
    [Google Scholar]
  38. Everett R. D. 2006; The roles of ICP0 during HSV-1 infection. In Alpha Herpesviruses Molecular and Cellular Biology pp. 39–64 Edited by Sandri-Goldin R. M. Wymondham: Caister Academic Press;
    [Google Scholar]
  39. Everett R. D. 2010; Depletion of CoREST does not improve the replication of ICP0 null mutant herpes simplex virus type 1. J Virol 84:3695–3698 [View Article][PubMed]
    [Google Scholar]
  40. Everett R. D. 2011; The role of ICP0 in counteracting intrinsic cellular resistance to virus infection. In Alphaherpesviruses: Molecular Virology pp. 39–50 Edited by Weller S. K. Norfolk, UK: Caister Academic Press;
    [Google Scholar]
  41. Everett R. D., Chelbi-Alix M. K. 2007; PML and PML nuclear bodies: implications in antiviral defence. Biochimie 89:819–830 [View Article][PubMed]
    [Google Scholar]
  42. Everett R. D., Murray J. 2005; ND10 components relocate to sites associated with herpes simplex virus type 1 nucleoprotein complexes during virus infection. J Virol 79:5078–5089 [View Article][PubMed]
    [Google Scholar]
  43. Everett R. D., Orr A. 2009; Herpes simplex virus type 1 regulatory protein ICP0 aids infection in cells with a preinduced interferon response but does not impede interferon-induced gene induction. J Virol 83:4978–4983 [View Article][PubMed]
    [Google Scholar]
  44. Everett R. D., Barlow P., Milner A., Luisi B., Orr A., Hope G., Lyon D. 1993; A novel arrangement of zinc-binding residues and secondary structure in the C3HC4 motif of an alpha herpes virus protein family. J Mol Biol 234:1038–1047 [View Article][PubMed]
    [Google Scholar]
  45. Everett R. D., Freemont P., Saitoh H., Dasso M., Orr A., Kathoria M., Parkinson J. 1998a; The disruption of ND10 during herpes simplex virus infection correlates with the Vmw110- and proteasome-dependent loss of several PML isoforms. J Virol 72:6581–6591[PubMed]
    [Google Scholar]
  46. Everett R. D., Orr A., Preston C. M. 1998b; A viral activator of gene expression functions via the ubiquitin-proteasome pathway. EMBO J 17:7161–7169 [View Article][PubMed]
    [Google Scholar]
  47. Everett R. D., Earnshaw W. C., Findlay J., Lomonte P. 1999a; Specific destruction of kinetochore protein CENP-C and disruption of cell division by herpes simplex virus immediate-early protein Vmw110. EMBO J 18:1526–1538 [View Article][PubMed]
    [Google Scholar]
  48. Everett R. D., Meredith M., Orr A. 1999b; The ability of herpes simplex virus type 1 immediate-early protein Vmw110 to bind to a ubiquitin-specific protease contributes to its roles in the activation of gene expression and stimulation of virus replication. J Virol 73:417–426[PubMed]
    [Google Scholar]
  49. Everett R. D., Boutell C., Orr A. 2004; Phenotype of a herpes simplex virus type 1 mutant that fails to express immediate-early regulatory protein ICP0. J Virol 78:1763–1774 [View Article][PubMed]
    [Google Scholar]
  50. Everett R. D., Rechter S., Papior P., Tavalai N., Stamminger T., Orr A. 2006; PML contributes to a cellular mechanism of repression of herpes simplex virus type 1 infection that is inactivated by ICP0. J Virol 80:7995–8005 [View Article][PubMed]
    [Google Scholar]
  51. Everett R. D., Murray J., Orr A., Preston C. M. 2007; Herpes simplex virus type 1 genomes are associated with ND10 nuclear substructures in quiescently infected human fibroblasts. J Virol 81:10991–11004 [View Article][PubMed]
    [Google Scholar]
  52. Everett R. D., Parada C., Gripon P., Sirma H., Orr A. 2008a; Replication of ICP0-null mutant herpes simplex virus type 1 is restricted by both PML and Sp100. J Virol 82:2661–2672 [View Article][PubMed]
    [Google Scholar]
  53. Everett R. D., Young D. F., Randall R. E., Orr A. 2008b; STAT-1- and IRF-3-dependent pathways are not essential for repression of ICP0-null mutant herpes simplex virus type 1 in human fibroblasts. J Virol 82:8871–8881 [View Article][PubMed]
    [Google Scholar]
  54. Everett R. D., Parsy M. L., Orr A. 2009; Analysis of the functions of herpes simplex virus type 1 regulatory protein ICP0 that are critical for lytic infection and derepression of quiescent viral genomes. J Virol 83:4963–4977 [View Article][PubMed]
    [Google Scholar]
  55. Everett R. D., Boutell C., McNair C., Grant L., Orr A. 2010; Comparison of the biological and biochemical activities of several members of the alphaherpesvirus ICP0 family of proteins. J Virol 84:3476–3487 [View Article][PubMed]
    [Google Scholar]
  56. Everett R. D., Bell A. J., Lu Y., Orr A. 2013; The replication defect of ICP0-null mutant HSV-1 can be largely complemented by the combined activities of HCMV proteins IE1 and pp71. J Virol (in press) [View Article][PubMed]
    [Google Scholar]
  57. Ferenczy M. W., DeLuca N. A. 2009; Epigenetic modulation of gene expression from quiescent herpes simplex virus genomes. J Virol 83:8514–8524 [View Article][PubMed]
    [Google Scholar]
  58. Ferenczy M. W., DeLuca N. A. 2011; Reversal of heterochromatic silencing of quiescent herpes simplex virus type 1 by ICP0. J Virol 85:3424–3435 [View Article][PubMed]
    [Google Scholar]
  59. Ferenczy M. W., Ranayhossaini D. J., Deluca N. A. 2011; Activities of ICP0 involved in the reversal of silencing of quiescent herpes simplex virus 1. J Virol 85:4993–5002 [View Article][PubMed]
    [Google Scholar]
  60. Fukuyo Y., Mogi K., Tsunematsu Y., Nakajima T. 2004; E2FBP1/hDril1 modulates cell growth through downregulation of promyelocytic leukemia bodies. Cell Death Differ 11:747–759 [View Article][PubMed]
    [Google Scholar]
  61. Fukuyo Y., Horikoshi N., Ishov A. M., Silverstein S. J., Nakajima T. 2011; The herpes simplex virus immediate-early ubiquitin ligase ICP0 induces degradation of the ICP0 repressor protein E2FBP1. J Virol 85:3356–3366 [View Article][PubMed]
    [Google Scholar]
  62. Full F., Reuter N., Zielke K., Stamminger T., Ensser A. 2012; Herpesvirus saimiri antagonizes nuclear domain 10-instituted intrinsic immunity via an ORF3-mediated selective degradation of cellular protein Sp100. J Virol 86:3541–3553 [View Article][PubMed]
    [Google Scholar]
  63. Geoffroy M. C., Chelbi-Alix M. K. 2011; Role of promyelocytic leukemia protein in host antiviral defense. J Interferon Cytokine Res 31:145–158 [View Article][PubMed]
    [Google Scholar]
  64. Geoffroy M. C., Jaffray E. G., Walker K. J., Hay R. T. 2010; Arsenic-induced SUMO-dependent recruitment of RNF4 into PML nuclear bodies. Mol Biol Cell 21:4227–4239 [View Article][PubMed]
    [Google Scholar]
  65. Glass M., Everett R. D. 2013; Components of PML Nuclear Bodies (ND10) act cooperatively to repress herpesvirus infection. J Virol 87: In press [CrossRef]
    [Google Scholar]
  66. Goodbourn S., Didcock L., Randall R. E. 2000; Interferons: cell signalling, immune modulation, antiviral response and virus countermeasures. J Gen Virol 81:2341–2364[PubMed]
    [Google Scholar]
  67. Grant K., Grant L., Tong L., Boutell C. 2012; Depletion of intracellular zinc inhibits the ubiquitin ligase activity of viral regulatory protein ICP0 and restricts herpes simplex virus 1 replication in cell culture. J Virol 86:4029–4033 [View Article][PubMed]
    [Google Scholar]
  68. Gross S., Catez F., Masumoto H., Lomonte P. 2012; Centromere architecture breakdown induced by the viral E3 ubiquitin ligase ICP0 protein of herpes simplex virus type 1. PLoS ONE 7:e44227 [View Article][PubMed]
    [Google Scholar]
  69. Gu H., Roizman B. 2003; The degradation of promyelocytic leukemia and Sp100 proteins by herpes simplex virus 1 is mediated by the ubiquitin-conjugating enzyme UbcH5a. Proc Natl Acad Sci U S A 100:8963–8968 [View Article][PubMed]
    [Google Scholar]
  70. Gu H., Roizman B. 2007; Herpes simplex virus-infected cell protein 0 blocks the silencing of viral DNA by dissociating histone deacetylases from the CoREST-REST complex. Proc Natl Acad Sci U S A 104:17134–17139 [View Article][PubMed]
    [Google Scholar]
  71. Gu H., Roizman B. 2009; The two functions of herpes simplex virus 1 ICP0, inhibition of silencing by the CoREST/REST/HDAC complex and degradation of PML, are executed in tandem. J Virol 83:181–187 [View Article][PubMed]
    [Google Scholar]
  72. Gu H., Liang Y., Mandel G., Roizman B. 2005; Components of the REST/CoREST/histone deacetylase repressor complex are disrupted, modified, and translocated in HSV-1-infected cells. Proc Natl Acad Sci U S A 102:7571–7576 [View Article][PubMed]
    [Google Scholar]
  73. Hagglund R., Roizman B. 2002; Characterization of the novel E3 ubiquitin ligase encoded in exon 3 of herpes simplex virus-1-infected cell protein 0. Proc Natl Acad Sci U S A 99:7889–7894 [View Article][PubMed]
    [Google Scholar]
  74. Hagglund R., Roizman B. 2004; Role of ICP0 in the strategy of conquest of the host cell by herpes simplex virus 1. J Virol 78:2169–2178 [View Article][PubMed]
    [Google Scholar]
  75. Hagglund R., Van Sant C., Lopez P., Roizman B. 2002; Herpes simplex virus 1-infected cell protein 0 contains two E3 ubiquitin ligase sites specific for different E2 ubiquitin-conjugating enzymes. Proc Natl Acad Sci U S A 99:631–636 [View Article][PubMed]
    [Google Scholar]
  76. Hancock M. H., Cliffe A. R., Knipe D. M., Smiley J. R. 2010; Herpes simplex virus VP16, but not ICP0, is required to reduce histone occupancy and enhance histone acetylation on viral genomes in U2OS osteosarcoma cells. J Virol 84:1366–1375 [View Article][PubMed]
    [Google Scholar]
  77. Harris R. A., Everett R. D., Zhu X. X., Silverstein S., Preston C. M. 1989; Herpes simplex virus type 1 immediate-early protein Vmw110 reactivates latent herpes simplex virus type 2 in an in vitro latency system. J Virol 63:3513–3515[PubMed]
    [Google Scholar]
  78. Hay R. T. 2005; SUMO: a history of modification. Mol Cell 18:1–12 [View Article][PubMed]
    [Google Scholar]
  79. Heaton P. R., Deyrieux A. F., Bian X. L., Wilson V. G. 2011; HPV E6 proteins target Ubc9, the SUMO conjugating enzyme. Virus Res 158:199–208 [View Article][PubMed]
    [Google Scholar]
  80. Hecker C. M., Rabiller M., Haglund K., Bayer P., Dikic I. 2006; Specification of SUMO1- and SUMO2-interacting motifs. J Biol Chem 281:16117–16127 [View Article][PubMed]
    [Google Scholar]
  81. Hollenbach A. D., McPherson C. J., Mientjes E. J., Iyengar R., Grosveld G. 2002; Daxx and histone deacetylase II associate with chromatin through an interaction with core histones and the chromatin-associated protein Dek. J Cell Sci 115:3319–3330[PubMed]
    [Google Scholar]
  82. Jensen K., Shiels C., Freemont P. S. 2001; PML protein isoforms and the RBCC/TRIM motif. Oncogene 20:7223–7233 [View Article][PubMed]
    [Google Scholar]
  83. Jurak I., Silverstein L. B., Sharma M., Coen D. M. 2012; Herpes simplex virus is equipped with RNA- and protein-based mechanisms to repress expression of ATRX, an effector of intrinsic immunity. J Virol 86:10093–10102 [View Article][PubMed]
    [Google Scholar]
  84. Kim Y. E., Lee J. H., Kim E. T., Shin H. J., Gu S. Y., Seol H. S., Ling P. D., Lee C. H., Ahn J. H. 2011; Human cytomegalovirus infection causes degradation of Sp100 proteins that suppress viral gene expression. J Virol 85:11928–11937 [View Article][PubMed]
    [Google Scholar]
  85. Knipe D. M., Cliffe A. 2008; Chromatin control of herpes simplex virus lytic and latent infection. Nat Rev Microbiol 6:211–221 [View Article][PubMed]
    [Google Scholar]
  86. Knipe D. M., Howley P. M., Griffin D. E., Lamb R. A., Martin M. A., Roizman B., Strauss S. E. 2006 Fields Virology Philadelphia: Lippincott Williams and Wilkins;
    [Google Scholar]
  87. Kutluay S. B., Triezenberg S. J. 2009a; Regulation of histone deposition on the herpes simplex virus type 1 genome during lytic infection. J Virol 83:5835–5845 [View Article][PubMed]
    [Google Scholar]
  88. Kutluay S. B., Triezenberg S. J. 2009b; Role of chromatin during herpesvirus infections. Biochim Biophys Acta 1790:456–466 [View Article][PubMed]
    [Google Scholar]
  89. Kyratsous C. A., Silverstein S. J. 2009; Components of nuclear domain 10 bodies regulate varicella-zoster virus replication. J Virol 83:4262–4274 [View Article][PubMed]
    [Google Scholar]
  90. Lacasse J. J., Schang L. M. 2010; During lytic infections, herpes simplex virus type 1 DNA is in complexes with the properties of unstable nucleosomes. J Virol 84:1920–1933 [View Article][PubMed]
    [Google Scholar]
  91. Lacasse J. J., Schang L. M. 2012; Herpes simplex virus 1 DNA is in unstable nucleosomes throughout the lytic infection cycle, and the instability of the nucleosomes is independent of DNA replication. J Virol 86:11287–11300 [View Article][PubMed]
    [Google Scholar]
  92. Lallemand-Breitenbach V., Jeanne M., Benhenda S., Nasr R., Lei M., Peres L., Zhou J., Zhu J., Raught B., de Thé H. 2008; Arsenic degrades PML or PML-RARα through a SUMO-triggered RNF4/ubiquitin-mediated pathway. Nat Cell Biol 10:547–555 [View Article][PubMed]
    [Google Scholar]
  93. Lees-Miller S. P., Long M. C., Kilvert M. A., Lam V., Rice S. A., Spencer C. A. 1996; Attenuation of DNA-dependent protein kinase activity and its catalytic subunit by the herpes simplex virus type 1 transactivator ICP0. J Virol 70:7471–7477[PubMed]
    [Google Scholar]
  94. Lewis P. W., Elsaesser S. J., Noh K. M., Stadler S. C., Allis C. D. 2010; Daxx is an H3.3-specific histone chaperone and cooperates with ATRX in replication-independent chromatin assembly at telomeres. Proc Natl Acad Sci U S A 107:14075–14080 [View Article][PubMed]
    [Google Scholar]
  95. Lilley C. E., Carson C. T., Muotri A. R., Gage F. H., Weitzman M. D. 2005; DNA repair proteins affect the lifecycle of herpes simplex virus 1. Proc Natl Acad Sci U S A 102:5844–5849 [View Article][PubMed]
    [Google Scholar]
  96. Lilley C. E., Chaurushiya M. S., Boutell C., Landry S., Suh J., Panier S., Everett R. D., Stewart G. S., Durocher D., Weitzman M. D. 2010; A viral E3 ligase targets RNF8 and RNF168 to control histone ubiquitination and DNA damage responses. EMBO J 29:943–955 [View Article][PubMed]
    [Google Scholar]
  97. Lilley C. E., Chaurushiya M. S., Boutell C., Everett R. D., Weitzman M. D. 2011; The intrinsic antiviral defense to incoming HSV-1 genomes includes specific DNA repair proteins and is counteracted by the viral protein ICP0. PLoS Pathog 7:e1002084 [View Article][PubMed]
    [Google Scholar]
  98. Lium E. K., Silverstein S. 1997; Mutational analysis of the herpes simplex virus type 1 ICP0 C3HC4 zinc ring finger reveals a requirement for ICP0 in the expression of the essential alpha27 gene. J Virol 71:8602–8614[PubMed]
    [Google Scholar]
  99. Lomonte P., Everett R. D. 1999; Herpes simplex virus type 1 immediate-early protein Vmw110 inhibits progression of cells through mitosis and from G1 into S phase of the cell cycle. J Virol 73:9456–9467[PubMed]
    [Google Scholar]
  100. Lomonte P., Morency E. 2007; Centromeric protein CENP-B proteasomal degradation induced by the viral protein ICP0. FEBS Lett 581:658–662 [View Article][PubMed]
    [Google Scholar]
  101. Lomonte P., Sullivan K. F., Everett R. D. 2001; Degradation of nucleosome-associated centromeric histone H3-like protein CENP-A induced by herpes simplex virus type 1 protein ICP0. J Biol Chem 276:5829–5835 [View Article][PubMed]
    [Google Scholar]
  102. Lomonte P., Thomas J., Texier P., Caron C., Khochbin S., Epstein A. L. 2004; Functional interaction between class II histone deacetylases and ICP0 of herpes simplex virus type 1. J Virol 78:6744–6757 [View Article][PubMed]
    [Google Scholar]
  103. Lopez P., Van Sant C., Roizman B. 2001; Requirements for the nuclear-cytoplasmic translocation of infected-cell protein 0 of herpes simplex virus 1. J Virol 75:3832–3840 [View Article][PubMed]
    [Google Scholar]
  104. Lukashchuk V., Everett R. D. 2010; Regulation of ICP0-null mutant herpes simplex virus type 1 infection by ND10 components ATRX and hDaxx. J Virol 84:4026–4040 [View Article][PubMed]
    [Google Scholar]
  105. Lukashchuk V., McFarlane S., Everett R. D., Preston C. M. 2008; Human cytomegalovirus protein pp71 displaces the chromatin-associated factor ATRX from nuclear domain 10 at early stages of infection. J Virol 82:12543–12554 [View Article][PubMed]
    [Google Scholar]
  106. Maringer K., Elliott G. 2010; Recruitment of herpes simplex virus type 1 immediate-early protein ICP0 to the virus particle. J Virol 84:4682–4696 [View Article][PubMed]
    [Google Scholar]
  107. Markson G., Kiel C., Hyde R., Brown S., Charalabous P., Bremm A., Semple J., Woodsmith J., Duley S. other authors 2009; Analysis of the human E2 ubiquitin conjugating enzyme protein interaction network. Genome Res 19:1905–1911 [View Article][PubMed]
    [Google Scholar]
  108. Maul G. G. 1998; Nuclear domain 10, the site of DNA virus transcription and replication. Bioessays 20:660–667 [View Article][PubMed]
    [Google Scholar]
  109. Maul G. G., Everett R. D. 1994; The nuclear location of PML, a cellular member of the C3HC4 zinc-binding domain protein family, is rearranged during herpes simplex virus infection by the C3HC4 viral protein ICP0. J Gen Virol 75:1223–1233 [View Article][PubMed]
    [Google Scholar]
  110. Meredith M., Orr A., Elliott M., Everett R. 1995; Separation of sequence requirements for HSV-1 Vmw110 multimerisation and interaction with a 135-kDa cellular protein. Virology 209:174–187 [View Article][PubMed]
    [Google Scholar]
  111. Mohammad D. H., Yaffe M. B. 2009; 14-3-3 proteins, FHA domains and BRCT domains in the DNA damage response. DNA Repair (Amst) 8:1009–1017 [View Article][PubMed]
    [Google Scholar]
  112. Mohni K. N., Mastrocola A. S., Bai P., Weller S. K., Heinen C. D. 2011; DNA mismatch repair proteins are required for efficient herpes simplex virus 1 replication. J Virol 85:12241–12253 [View Article][PubMed]
    [Google Scholar]
  113. Morency E., Sabra M., Catez F., Texier P., Lomonte P. 2007; A novel cell response triggered by interphase centromere structural instability. J Cell Biol 177:757–768 [View Article][PubMed]
    [Google Scholar]
  114. Mostafa H. H., Thompson T. W., Kushnir A. S., Haenchen S. D., Bayless A. M., Hilliard J. G., Link M. A., Pitcher L. A., Loveday E. other authors 2011; Herpes simplex virus 1 ICP0 phosphorylation site mutants are attenuated for viral replication and impaired for explant-induced reactivation. J Virol 85:12631–12637 [View Article][PubMed]
    [Google Scholar]
  115. Müller S., Dejean A. 1999; Viral immediate-early proteins abrogate the modification by SUMO-1 of PML and Sp100 proteins, correlating with nuclear body disruption. J Virol 73:5137–5143[PubMed]
    [Google Scholar]
  116. Nagel C. H., Albrecht N., Milovic-Holm K., Mariyanna L., Keyser B., Abel B., Weseloh B., Hofmann T. G., Eibl M. M., Hauber J. 2011; Herpes simplex virus immediate-early protein ICP0 is targeted by SIAH-1 for proteasomal degradation. J Virol 85:7644–7657 [View Article][PubMed]
    [Google Scholar]
  117. Nevels M., Nitzsche A., Paulus C. 2011; How to control an infectious bead string: nucleosome-based regulation and targeting of herpesvirus chromatin. Rev Med Virol 21:154–180 [View Article][PubMed]
    [Google Scholar]
  118. Newhart A., Rafalska-Metcalf I. U., Yang T., Negorev D. G., Janicki S. M. 2012; Single cell analysis of Daxx and ATRX-dependent transcriptional repression. J Cell Sci [View Article][PubMed]
    [Google Scholar]
  119. Nicholl M. J., Preston C. M. 1996; Inhibition of herpes simplex virus type 1 immediate-early gene expression by alpha interferon is not VP16 specific. J Virol 70:6336–6339[PubMed]
    [Google Scholar]
  120. Nicoll M. P., Proença J. T., Efstathiou S. 2012; The molecular basis of herpes simplex virus latency. FEMS Microbiol Rev 36:684–705 [View Article][PubMed]
    [Google Scholar]
  121. Orzalli M. H., Deluca N. A., Knipe D. M. 2012; Nuclear IFI16 induction of IRF-3 signaling during herpesviral infection and degradation of IFI16 by the viral ICP0 protein. Proc Natl Acad Sci U S A 109:E3008–E3017 [View Article][PubMed]
    [Google Scholar]
  122. Paladino P., Collins S. E., Mossman K. L. 2010; Cellular localization of the herpes simplex virus ICP0 protein dictates its ability to block IRF3-mediated innate immune responses. PLoS ONE 5:e10428 [View Article][PubMed]
    [Google Scholar]
  123. Parkinson J., Everett R. D. 2000; Alphaherpesvirus proteins related to herpes simplex virus type 1 ICP0 affect cellular structures and proteins. J Virol 74:10006–10017 [View Article][PubMed]
    [Google Scholar]
  124. Parkinson J., Everett R. D. 2001; Alphaherpesvirus proteins related to herpes simplex virus type 1 ICP0 induce the formation of colocalizing, conjugated ubiquitin. J Virol 75:5357–5362 [View Article][PubMed]
    [Google Scholar]
  125. Parkinson J., Lees-Miller S. P., Everett R. D. 1999; Herpes simplex virus type 1 immediate-early protein vmw110 induces the proteasome-dependent degradation of the catalytic subunit of DNA-dependent protein kinase. J Virol 73:650–657[PubMed]
    [Google Scholar]
  126. Perry J. J., Tainer J. A., Boddy M. N. 2008; A SIM-ultaneous role for SUMO and ubiquitin. Trends Biochem Sci 33:201–208 [View Article][PubMed]
    [Google Scholar]
  127. Poon A. P., Gu H., Roizman B. 2006; ICP0 and the US3 protein kinase of herpes simplex virus 1 independently block histone deacetylation to enable gene expression. Proc Natl Acad Sci U S A 103:9993–9998 [View Article][PubMed]
    [Google Scholar]
  128. Potel C., Elliott G. 2005; Phosphorylation of the herpes simplex virus tegument protein VP22 has no effect on incorporation of VP22 into the virus but is involved in optimal expression and virion packaging of ICP0. J Virol 79:14057–14068 [View Article][PubMed]
    [Google Scholar]
  129. Praefcke G. J., Hofmann K., Dohmen R. J. 2012; SUMO playing tag with ubiquitin. Trends Biochem Sci 37:23–31 [View Article][PubMed]
    [Google Scholar]
  130. Preston C. M., Nicholl M. J. 2006; Role of the cellular protein hDaxx in human cytomegalovirus immediate-early gene expression. J Gen Virol 87:1113–1121 [View Article][PubMed]
    [Google Scholar]
  131. Proença J. T., Coleman H. M., Connor V., Winton D. J., Efstathiou S. 2008; A historical analysis of herpes simplex virus promoter activation in vivo reveals distinct populations of latently infected neurones. J Gen Virol 89:2965–2974 [View Article][PubMed]
    [Google Scholar]
  132. Proença J. T., Coleman H. M., Nicoll M. P., Connor V., Preston C. M., Arthur J., Efstathiou S. 2011; An investigation of herpes simplex virus promoter activity compatible with latency establishment reveals VP16-independent activation of immediate-early promoters in sensory neurones. J Gen Virol 92:2575–2585 [View Article][PubMed]
    [Google Scholar]
  133. Reichelt M., Wang L., Sommer M., Perrino J., Nour A. M., Sen N., Baiker A., Zerboni L., Arvin A. M. 2011; Entrapment of viral capsids in nuclear PML cages is an intrinsic antiviral host defense against varicella-zoster virus. PLoS Pathog 7:e1001266 [View Article][PubMed]
    [Google Scholar]
  134. Saffert R. T., Kalejta R. F. 2006; Inactivating a cellular intrinsic immune defense mediated by Daxx is the mechanism through which the human cytomegalovirus pp71 protein stimulates viral immediate-early gene expression. J Virol 80:3863–3871 [View Article][PubMed]
    [Google Scholar]
  135. Saira K., Zhou Y., Jones C. 2007; The infected cell protein 0 encoded by bovine herpesvirus 1 (bICP0) induces degradation of interferon response factor 3 and, consequently, inhibits beta interferon promoter activity. J Virol 81:3077–3086 [View Article][PubMed]
    [Google Scholar]
  136. Sloan E., Henriquez R., Kinchington P. R., Slobedman B., Abendroth A. 2012; Varicella-zoster virus inhibition of the NF-κB pathway during infection of human dendritic cells: role for open reading frame 61 as a modulator of NF-κB activity. J Virol 86:1193–1202 [View Article][PubMed]
    [Google Scholar]
  137. Smith M. C., Boutell C., Davido D. J. 2011; HSV-1 ICP0: paving the way for viral replication. Future Virol 6:421–429 [View Article][PubMed]
    [Google Scholar]
  138. Sobol P. T., Mossman K. L. 2011; Mechanisms of subversion of type 1 interferon responses by alphaherpesviruses. In Alphaherpesviruses: Molecular Virology pp. 219–236 Edited by Weller S. K. Norfolk, UK: Caister Academic Press;
    [Google Scholar]
  139. Song J., Durrin L. K., Wilkinson T. A., Krontiris T. G., Chen Y. 2004; Identification of a SUMO-binding motif that recognizes SUMO-modified proteins. Proc Natl Acad Sci U S A 101:14373–14378 [View Article][PubMed]
    [Google Scholar]
  140. Song J., Zhang Z., Hu W., Chen Y. 2005; Small ubiquitin-like modifier (SUMO) recognition of a SUMO binding motif: a reversal of the bound orientation. J Biol Chem 280:40122–40129 [View Article][PubMed]
    [Google Scholar]
  141. Stehmeier P., Muller S. 2009; Phospho-regulated SUMO interaction modules connect the SUMO system to CK2 signaling. Mol Cell 33:400–409 [View Article][PubMed]
    [Google Scholar]
  142. Tatham M. H., Geoffroy M. C., Shen L., Plechanovova A., Hattersley N., Jaffray E. G., Palvimo J. J., Hay R. T. 2008; RNF4 is a poly-SUMO-specific E3 ubiquitin ligase required for arsenic-induced PML degradation. Nat Cell Biol 10:538–546 [View Article][PubMed]
    [Google Scholar]
  143. Tavalai N., Stamminger T. 2008; New insights into the role of the subnuclear structure ND10 for viral infection. Biochim Biophys Acta 1783:2207–2221 [View Article][PubMed]
    [Google Scholar]
  144. Tavalai N., Papior P., Rechter S., Leis M., Stamminger T. 2006; Evidence for a role of the cellular ND10 protein PML in mediating intrinsic immunity against human cytomegalovirus infections. J Virol 80:8006–8018 [View Article][PubMed]
    [Google Scholar]
  145. Tavalai N., Papior P., Rechter S., Stamminger T. 2008; Nuclear domain 10 components promyelocytic leukemia protein and hDaxx independently contribute to an intrinsic antiviral defense against human cytomegalovirus infection. J Virol 82:126–137 [View Article][PubMed]
    [Google Scholar]
  146. Tavalai N., Adler M., Scherer M., Riedl Y., Stamminger T. 2011; Evidence for a dual antiviral role of the major nuclear domain 10 component Sp100 during the immediate-early and late phases of the human cytomegalovirus replication cycle. J Virol 85:9447–9458 [View Article][PubMed]
    [Google Scholar]
  147. Terry-Allison T., Smith C. A., DeLuca N. A. 2007; Relaxed repression of herpes simplex virus type 1 genomes in murine trigeminal neurons. J Virol 81:12394–12405 [View Article][PubMed]
    [Google Scholar]
  148. Thompson R. L., Sawtell N. M. 2006; Evidence that the herpes simplex virus type 1 ICP0 protein does not initiate reactivation from latency in vivo. J Virol 80:10919–10930 [View Article][PubMed]
    [Google Scholar]
  149. Trempe J. F. 2011; Reading the ubiquitin postal code. Curr Opin Struct Biol 21:792–801 [View Article][PubMed]
    [Google Scholar]
  150. Tsai K., Thikmyanova N., Wojcechowskyj J. A., Delecluse H. J., Lieberman P. M. 2011; EBV tegument protein BNRF1 disrupts DAXX-ATRX to activate viral early gene transcription. PLoS Pathog 7:e1002376 [View Article][PubMed]
    [Google Scholar]
  151. van Lint A. L., Murawski M. R., Goodbody R. E., Severa M., Fitzgerald K. A., Finberg R. W., Knipe D. M., Kurt-Jones E. A. 2010; Herpes simplex virus immediate-early ICP0 protein inhibits Toll-like receptor 2-dependent inflammatory responses and NF-κB signaling. J Virol 84:10802–10811 [View Article][PubMed]
    [Google Scholar]
  152. van Wijk S. J., de Vries S. J., Kemmeren P., Huang A., Boelens R., Bonvin A. M., Timmers H. T. 2009; A comprehensive framework of E2-RING E3 interactions of the human ubiquitin-proteasome system. Mol Syst Biol 5:295[PubMed] [CrossRef]
    [Google Scholar]
  153. Vanni E., Gatherer D., Tong L., Everett R. D., Boutell C. 2012; Functional characterization of residues required for the herpes simplex virus 1 E3 ubiquitin ligase ICP0 to interact with the cellular E2 ubiquitin-conjugating enzyme UBE2D1 (UbcH5a). J Virol 86:6323–6333 [View Article][PubMed]
    [Google Scholar]
  154. Walters M. S., Kyratsous C. A., Silverstein S. J. 2010; The RING finger domain of varicella-zoster virus ORF61p has E3 ubiquitin ligase activity that is essential for efficient autoubiquitination and dispersion of Sp100-containing nuclear bodies. J Virol 84:6861–6865 [View Article][PubMed]
    [Google Scholar]
  155. Wang L., Sommer M., Rajamani J., Arvin A. M. 2009; Regulation of the ORF61 promoter and ORF61 functions in varicella-zoster virus replication and pathogenesis. J Virol 83:7560–7572 [View Article][PubMed]
    [Google Scholar]
  156. Wang L., Oliver S. L., Sommer M., Rajamani J., Reichelt M., Arvin A. M. 2011; Disruption of PML nuclear bodies is mediated by ORF61 SUMO-interacting motifs and required for varicella-zoster virus pathogenesis in skin. PLoS Pathog 7:e1002157 [View Article][PubMed]
    [Google Scholar]
  157. Weisshaar S. R., Keusekotten K., Krause A., Horst C., Springer H. M., Göttsche K., Dohmen R. J., Praefcke G. J. 2008; Arsenic trioxide stimulates SUMO-2/3 modification leading to RNF4-dependent proteolytic targeting of PML. FEBS Lett 582:3174–3178 [View Article][PubMed]
    [Google Scholar]
  158. Weller S. K. 2010; Herpes simplex virus reorganizes the cellular DNA repair and protein quality control machinery. PLoS Pathog 6:e1001105 [View Article][PubMed]
    [Google Scholar]
  159. Wilkinson D. E., Weller S. K. 2005; Inhibition of the herpes simplex virus type 1 DNA polymerase induces hyperphosphorylation of replication protein A and its accumulation at S-phase-specific sites of DNA damage during infection. J Virol 79:7162–7171 [View Article][PubMed]
    [Google Scholar]
  160. Wilkinson D. E., Weller S. K. 2006; Herpes simplex virus type I disrupts the ATR-dependent DNA-damage response during lytic infection. J Cell Sci 119:2695–2703 [View Article][PubMed]
    [Google Scholar]
  161. Wimmer P., Schreiner S., Dobner T. 2012; Human pathogens and the host cell SUMOylation system. J Virol 86:642–654 [View Article][PubMed]
    [Google Scholar]
  162. Woodhall D. L., Groves I. J., Reeves M. B., Wilkinson G., Sinclair J. H. 2006; Human Daxx-mediated repression of human cytomegalovirus gene expression correlates with a repressive chromatin structure around the major immediate early promoter. J Biol Chem 281:37652–37660 [View Article][PubMed]
    [Google Scholar]
  163. Xue Y., Gibbons R., Yan Z., Yang D., McDowell T. L., Sechi S., Qin J., Zhou S., Higgs D., Wang W. 2003; The ATRX syndrome protein forms a chromatin-remodeling complex with Daxx and localizes in promyelocytic leukemia nuclear bodies. Proc Natl Acad Sci U S A 100:10635–10640 [View Article][PubMed]
    [Google Scholar]
  164. Yao F., Courtney R. J. 1992; Association of ICP0 but not ICP27 with purified virions of herpes simplex virus type 1. J Virol 66:2709–2716[PubMed]
    [Google Scholar]
  165. Yao F., Schaffer P. A. 1995; An activity specified by the osteosarcoma line U2OS can substitute functionally for ICP0, a major regulatory protein of herpes simplex virus type 1. J Virol 69:6249–6258[PubMed]
    [Google Scholar]
  166. Zhang Y., Jones C. 2001; The bovine herpesvirus 1 immediate-early protein (bICP0) associates with histone deacetylase 1 to activate transcription. J Virol 75:9571–9578 [View Article][PubMed]
    [Google Scholar]
  167. Zhang Y., Jiang Y., Geiser V., Zhou J., Jones C. 2006; Bovine herpesvirus 1 immediate-early protein (bICP0) interacts with the histone acetyltransferase p300, which stimulates productive infection and gC promoter activity. J Gen Virol 87:1843–1851 [View Article][PubMed]
    [Google Scholar]
  168. Zhou G., Te D., Roizman B. 2011; The CoREST/REST repressor is both necessary and inimical for expression of herpes simplex virus genes. MBio 2:e00313–e10[PubMed] [CrossRef]
    [Google Scholar]
  169. Zhu H., Zheng C., Xing J., Wang S., Li S., Lin R., Mossman K. L. 2011; Varicella-zoster virus immediate-early protein ORF61 abrogates the IRF3-mediated innate immune response through degradation of activated IRF3. J Virol 85:11079–11089 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.048900-0
Loading
/content/journal/jgv/10.1099/vir.0.048900-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error