1887

Abstract

(FMV), a member of the newly formed genus , is a segmented negative-strand RNA virus. Each of the six genomic FMV segments contains a single ORF: that of RNA4 encodes the protein p4. FMV-p4 is presumed to be the movement protein (MP) of the virus; however, direct experimental evidence for this is lacking. We assessed the intercellular distribution of FMV-p4 in plant cells by confocal laser scanning microscopy and we found that FMV-p4 was localized to plasmodesmata and to the plasma membrane accompanied by tubule-like structures. A series of experiments designed to examine the movement functions revealed that FMV-p4 has the capacity to complement viral cell-to-cell movement, prompt GFP diffusion between cells, and spread by itself to neighbouring cells. Altogether, our findings demonstrated that FMV-p4 shares several properties with other viral MPs and plays an important role in cell-to-cell movement.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.047860-0
2013-03-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/jgv/94/3/682.html?itemId=/content/journal/jgv/10.1099/vir.0.047860-0&mimeType=html&fmt=ahah

References

  1. Agranovsky A. A., Folimonov A. S., Folimonova S. Y., Morozov S. Y., Schiemann J., Lesemann D., Atabekov J. G.. ( 1998;). Beet yellows closterovirus HSP70-like protein mediates the cell-to-cell movement of a potexvirus transport-deficient mutant and a hordeivirus-based chimeric virus. . J Gen Virol 79:, 889–895.[PubMed]
    [Google Scholar]
  2. Benthack W., Mielke N., Büttner C., Mühlbach H.-P.. ( 2005;). Double-stranded RNA pattern and partial sequence data indicate plant virus infection associated with the ringspot disease of European mountain ash (Sorbus aucuparia L.). . Arch Virol 150:, 37–52. [CrossRef][PubMed]
    [Google Scholar]
  3. Crawford K. M., Zambryski P. C.. ( 2000;). Subcellular localization determines the availability of non-targeted proteins to plasmodesmatal transport. . Curr Biol 10:, 1032–1040. [CrossRef][PubMed]
    [Google Scholar]
  4. Elbeaino T., Digiaro M., Alabdullah A., De Stradis A., Minafra A., Mielke N., Castellano M. A., Martelli G. P.. ( 2009a;). A multipartite single-stranded negative-sense RNA virus is the putative agent of fig mosaic disease. . J Gen Virol 90:, 1281–1288. [CrossRef][PubMed]
    [Google Scholar]
  5. Elbeaino T., Digiaro M., Martelli G. P.. ( 2009b;). Complete nucleotide sequence of four RNA segments of fig mosaic virus. . Arch Virol 154:, 1719–1727. [CrossRef][PubMed]
    [Google Scholar]
  6. Finn R. D., Mistry J., Tate J., Coggill P., Heger A., Pollington J. E., Gavin O. L., Gunasekaran P., Ceric G.. & other authors ( 2010;). The Pfam protein families database. . Nucleic Acids Res 38: (Database issue), D211–D222. [CrossRef][PubMed]
    [Google Scholar]
  7. Harries P., Ding B.. ( 2011;). Cellular factors in plant virus movement: at the leading edge of macromolecular trafficking in plants. . Virology 411:, 237–243. [CrossRef][PubMed]
    [Google Scholar]
  8. Hiraguri A., Netsu O., Shimizu T., Uehara-Ichiki T., Omura T., Sasaki N., Nyunoya H., Sasaya T.. ( 2011;). The nonstructural protein pC6 of rice grassy stunt virus trans-complements the cell-to-cell spread of a movement-defective tomato mosaic virus. . Arch Virol 156:, 911–916. [CrossRef][PubMed]
    [Google Scholar]
  9. Ishikawa K., Maejima K., Komatsu K., Kitazawa Y., Hashimoto M., Takata D., Yamaji Y., Namba S.. ( 2012;). Identification and characterization of two novel genomic RNA segments of fig mosaic virus, RNA5 and RNA6. . J Gen Virol 93:, 1612–1619. [CrossRef][PubMed]
    [Google Scholar]
  10. Laney A. G., Keller K. E., Martin R. R., Tzanetakis I. E.. ( 2011;). A discovery 70 years in the making: characterization of the Rose rosette virus. . J Gen Virol 92:, 1727–1732. [CrossRef][PubMed]
    [Google Scholar]
  11. Lazarowitz S. G., Beachy R. N.. ( 1999;). Viral movement proteins as probes for intracellular and intercellular trafficking in plants. . Plant Cell 11:, 535–548. [CrossRef][PubMed]
    [Google Scholar]
  12. Lewandowski D. J., Adkins S.. ( 2005;). The tubule-forming NSm protein from Tomato spotted wilt virus complements cell-to-cell and long-distance movement of Tobacco mosaic virus hybrids. . Virology 342:, 26–37. [CrossRef][PubMed]
    [Google Scholar]
  13. Marchler-Bauer A., Bryant S. H.. ( 2004;). CD-Search: protein domain annotations on the fly. . Nucleic Acids Res 32: (Web Server issue), W327–W331. [CrossRef][PubMed]
    [Google Scholar]
  14. Marchler-Bauer A., Anderson J. B., Chitsaz F., Derbyshire M. K., DeWeese-Scott C., Fong J. H., Geer L. Y., Geer R. C., Gonzales N. R.. & other authors ( 2009;). CDD: specific functional annotation with the Conserved Domain Database. . Nucleic Acids Res 37: (Database issue), D205–D210. [CrossRef][PubMed]
    [Google Scholar]
  15. McGavin W. J., Mitchell C., Cock P. J. A., Wright K. M., MacFarlane S. A.. ( 2012;). Raspberry leaf blotch virus, a putative new member of the genus Emaravirus, encodes a novel genomic RNA. . J Gen Virol 93:, 430–437. [CrossRef][PubMed]
    [Google Scholar]
  16. Mielke N., Müehlbach H. P.. ( 2007;). A novel, multipartite, negative-strand RNA virus is associated with the ringspot disease of European mountain ash (Sorbus aucuparia L.). . J Gen Virol 88:, 1337–1346. [CrossRef][PubMed]
    [Google Scholar]
  17. Niehl A., Heinlein M.. ( 2011;). Cellular pathways for viral transport through plasmodesmata. . Protoplasma 248:, 75–99. [CrossRef][PubMed]
    [Google Scholar]
  18. Oomen R. J., Séveno-Carpentier E., Ricodeau N., Bournaud C., Conéjéro G., Paris N., Berthomieu P., Marquès L.. ( 2011;). Plant defensin AhPDF1.1 is not secreted in leaves but it accumulates in intracellular compartments. . New Phytol 192:, 140–150. [CrossRef][PubMed]
    [Google Scholar]
  19. Oparka K. J., Boevink P., Cruz S. S.. ( 1996;). Studying the movement of plant viruses using green fluorescent protein. . Trends Plant Sci 1:, 412–418. [CrossRef]
    [Google Scholar]
  20. Otulak K., Garbaczewska G.. ( 2011;). Cell-to-cell movement of three genera (+) ss RNA plant virus. . Acta Physiol Plant 33:, 249–260. [CrossRef]
    [Google Scholar]
  21. Padgett H. S., Epel B. L., Kahn T. W., Heinlein M., Watanabe Y., Beachy R. N.. ( 1996;). Distribution of tobamovirus movement protein in infected cells and implications for cell-to-cell spread of infection. . Plant J 10:, 1079–1088. [CrossRef][PubMed]
    [Google Scholar]
  22. Petersen T. N., Brunak S., von Heijne G., Nielsen H.. ( 2011;). SignalP 4.0: discriminating signal peptides from transmembrane regions. . Nat Methods 8:, 785–786. [CrossRef][PubMed]
    [Google Scholar]
  23. Senshu H., Yamaji Y., Minato N., Shiraishi T., Maejima K., Hashimoto M., Miura C., Neriya Y., Namba S.. ( 2011;). A dual strategy for the suppression of host antiviral silencing: two distinct suppressors for viral replication and viral movement encoded by potato virus M. . J Virol 85:, 10269–10278. [CrossRef][PubMed]
    [Google Scholar]
  24. Sung D. Y., Kaplan F., Guy C. L.. ( 2001;). Plant Hsp70 molecular chaperons: Protein structure, gene family, expression and function. . Physiol Plant 113:, 443–451. [CrossRef]
    [Google Scholar]
  25. Takahashi S., Komatsu K., Kagiwada S., Ozeki J., Mori T., Hirata H., Yamaji Y., Ugaki M., Namba S.. ( 2006;). The efficiency of interference of Potato virus X infection depends on the target gene. . Virus Res 116:, 214–217. [CrossRef][PubMed]
    [Google Scholar]
  26. Walia J. J., Salem N. M., Falk B. W.. ( 2009;). Partial sequence and survey analysis identify a multipartite, negative-sense RNA virus associated with fig mosaic. . Plant Dis 93:, 4–10. [CrossRef]
    [Google Scholar]
  27. Wolf S., Lucas W. J., Deom C. M., Beachy R. N.. ( 1989;). Movement protein of tobacco mosaic virus modifies plasmodesmatal size exclusion limit. . Science 246:, 377–379. [CrossRef][PubMed]
    [Google Scholar]
  28. Xiong R., Wu J., Zhou Y., Zhou X.. ( 2008;). Identification of a movement protein of the Tenuivirus rice stripe virus. . J Virol 82:, 12304–12311. [CrossRef][PubMed]
    [Google Scholar]
  29. Zhu X., Zhao X., Burkholder W. F., Gragerov A., Ogata C. M., Gottesman M. E., Hendrickson W. A.. ( 1996;). Structural analysis of substrate binding by the molecular chaperone DnaK. . Science 272:, 1606–1614. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.047860-0
Loading
/content/journal/jgv/10.1099/vir.0.047860-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error