1887

Abstract

Since the 1990s West Nile virus (WNV) has become an increasingly important public health problem and the cause of outbreaks of neurological disease. Genetic analyses have identified multiple lineages with many studies focusing on lineage 1 due to its emergence in New York in 1999 and its neuroinvasive phenotype. Until recently, viruses in lineage 2 were not thought to be of public health importance due to few outbreaks of disease being associated with viruses in this lineage. However, recent epidemics of lineage 2 in Europe (Greece and Italy) and Russia have shown the increasing importance of this lineage. There are very few genetic studies examining isolates belonging to lineage 2. We have sequenced the full-length genomes of four older lineage 2 WNV isolates, compared them to 12 previously published genomic sequences and examined the evolution of this lineage. Our studies show that this lineage has evolved over the past 300–400 years and appears to correlate with a change from mouse attenuated to virulent phenotype based on previous studies by our group. This evolution mirrors that which is seen in lineage 1 isolates, which have also evolved to a virulent phenotype over the same period of time.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.046888-0
2013-02-01
2019-12-11
Loading full text...

Full text loading...

/deliver/fulltext/jgv/94/2/318.html?itemId=/content/journal/jgv/10.1099/vir.0.046888-0&mimeType=html&fmt=ahah

References

  1. Bagnarelli P. , Marinelli K. , Trotta D. , Monachetti A. , Tavio M. , Del Gobbo R. , Capobianchi M. , Menzo S. , Nicoletti L. . & other authors ( 2011; ). Human case of autochthonous West Nile virus lineage 2 infection in Italy, September 2011. . Euro Surveill 16:, 20002.[PubMed]
    [Google Scholar]
  2. Baillie G. J. , Kolokotronis S. O. , Waltari E. , Maffei J. G. , Kramer L. D. , Perkins S. L. . ( 2008; ). Phylogenetic and evolutionary analyses of St. Louis encephalitis virus genomes. . Mol Phylogenet Evol 47:, 717–728. [CrossRef] [PubMed]
    [Google Scholar]
  3. Bakonyi T. , Hubálek Z. , Rudolf I. , Nowotny N. . ( 2005; ). Novel flavivirus or new lineage of West Nile virus, central Europe. . Emerg Infect Dis 11:, 225–231. [CrossRef] [PubMed]
    [Google Scholar]
  4. Bakonyi T. , Ivanics E. , Erdélyi K. , Ursu K. , Ferenczi E. , Weissenböck H. , Nowotny N. . ( 2006; ). Lineage 1 and 2 strains of encephalitic West Nile virus, central Europe. . Emerg Infect Dis 12:, 618–623. [CrossRef] [PubMed]
    [Google Scholar]
  5. Beasley D. W. , Li L. , Suderman M. T. , Barrett A. D. . ( 2002; ). Mouse neuroinvasive phenotype of West Nile virus strains varies depending upon virus genotype. . Virology 296:, 17–23. [CrossRef] [PubMed]
    [Google Scholar]
  6. Beasley D. W. , Davis C. T. , Guzman H. , Vanlandingham D. L. , Travassos da Rosa A. P. , Parsons R. E. , Higgs S. , Tesh R. B. , Barrett A. D. . ( 2003; ). Limited evolution of West Nile virus has occurred during its southwesterly spread in the United States. . Virology 309:, 190–195. [CrossRef] [PubMed]
    [Google Scholar]
  7. Beasley D. W. , Davis C. T. , Whiteman M. , Granwehr B. , Kinney R. M. , Barrett A. D. . ( 2004; ). Molecular determinants of virulence of West Nile virus in North America. . Arch Virol Suppl 18:, 35–41.[PubMed]
    [Google Scholar]
  8. Berthet F. X. , Zeller H. G. , Drouet M. T. , Rauzier J. , Digoutte J. P. , Deubel V. . ( 1997; ). Extensive nucleotide changes and deletions within the envelope glycoprotein gene of Euro-African West Nile viruses. . J Gen Virol 78:, 2293–2297.[PubMed]
    [Google Scholar]
  9. Bondre V. P. , Jadi R. S. , Mishra A. C. , Yergolkar P. N. , Arankalle V. A. . ( 2007; ). West Nile virus isolates from India: evidence for a distinct genetic lineage. . J Gen Virol 88:, 875–884. [CrossRef] [PubMed]
    [Google Scholar]
  10. Botha E. M. , Markotter W. , Wolfaardt M. , Paweska J. T. , Swanepoel R. , Palacios G. , Nel L. H. , Venter M. . ( 2008; ). Genetic determinants of virulence in pathogenic lineage 2 West Nile virus strains. . Emerg Infect Dis 14:, 222–230.[PubMed] [CrossRef]
    [Google Scholar]
  11. Brault A. C. , Langevin S. A. , Bowen R. A. , Panella N. A. , Biggerstaff B. J. , Miller B. R. , Komar N. . ( 2004; ). Differential virulence of West Nile strains for American crows. . Emerg Infect Dis 10:, 2161–2168. [CrossRef] [PubMed]
    [Google Scholar]
  12. Brault A. C. , Huang C. Y. , Langevin S. A. , Kinney R. M. , Bowen R. A. , Ramey W. N. , Panella N. A. , Holmes E. C. , Powers A. M. , Miller B. R. . ( 2007; ). A single positively selected West Nile viral mutation confers increased virogenesis in American crows. . Nat Genet 39:, 1162–1166. [CrossRef] [PubMed]
    [Google Scholar]
  13. Bryant J. E. , Holmes E. C. , Barrett A. D. . ( 2007; ). Out of Africa: a molecular perspective on the introduction of yellow fever virus into the Americas. . PLoS Pathog 3:, e75. [CrossRef] [PubMed]
    [Google Scholar]
  14. Davis C. T. , Ebel G. D. , Lanciotti R. S. , Brault A. C. , Guzman H. , Siirin M. , Lambert A. , Parsons R. E. , Beasley D. W. . & other authors ( 2005; ). Phylogenetic analysis of North American West Nile virus isolates, 2001-2004: evidence for the emergence of a dominant genotype. . Virology 342:, 252–265. [CrossRef] [PubMed]
    [Google Scholar]
  15. Dong H. , Ren S. , Zhang B. , Zhou Y. , Puig-Basagoiti F. , Li H. , Shi P.-Y. . ( 2008a; ). West Nile virus methyltransferase catalyzes two methylations of the viral RNA cap through a substrate-repositioning mechanism. . J Virol 82:, 4295–4307. [CrossRef] [PubMed]
    [Google Scholar]
  16. Dong H. , Zhang B. , Shi P.-Y. . ( 2008b; ). Flavivirus methyltransferase: a novel antiviral target. . Antiviral Res 80:, 1–10. [CrossRef] [PubMed]
    [Google Scholar]
  17. Drummond A. J. , Rambaut A. . ( 2007; ). beast: Bayesian evolutionary analysis by sampling trees. . BMC Evol Biol 7:, 214. [CrossRef] [PubMed]
    [Google Scholar]
  18. Ebel G. D. , Carricaburu J. , Young D. , Bernard K. A. , Kramer L. D. . ( 2004; ). Genetic and phenotypic variation of West Nile virus in New York, 2000-2003. . Am J Trop Med Hyg 71:, 493–500.[PubMed]
    [Google Scholar]
  19. Felsenstein J. . ( 1989; ). phylip – phylogeny inference package (version 3.2). . Cladistics 5:, 164–166.
    [Google Scholar]
  20. Gouy M. , Guindon S. , Gascuel O. . ( 2010; ). SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. . Mol Biol Evol 27:, 221–224. [CrossRef] [PubMed]
    [Google Scholar]
  21. Guindon S. , Gascuel O. . ( 2003; ). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. . Syst Biol 52:, 696–704. [CrossRef] [PubMed]
    [Google Scholar]
  22. Hanada K. , Suzuki Y. , Gojobori T. . ( 2004; ). A large variation in the rates of synonymous substitution for RNA viruses and its relationship to a diversity of viral infection and transmission modes. . Mol Biol Evol 21:, 1074–1080. [CrossRef] [PubMed]
    [Google Scholar]
  23. Jenkins G. M. , Rambaut A. , Pybus O. G. , Holmes E. C. . ( 2002; ). Rates of molecular evolution in RNA viruses: a quantitative phylogenetic analysis. . J Mol Evol 54:, 156–165. [CrossRef] [PubMed]
    [Google Scholar]
  24. Kosakovsky Pond S. L. , Frost S. D. W. . ( 2005; ). Not so different after all: a comparison of methods for detecting amino acid sites under selection. . Mol Biol Evol 22:, 1208–1222. [CrossRef] [PubMed]
    [Google Scholar]
  25. Kosakovsky Pond S. L. , Posada D. , Gravenor M. B. , Woelk C. H. , Frost S. D. W. . ( 2006; ). Automated phylogenetic detection of recombination using a genetic algorithm. . Mol Biol Evol 23:, 1891–1901. [CrossRef] [PubMed]
    [Google Scholar]
  26. Li L. , Barrett A. D. T. , Beasley D. W. C. . ( 2005; ). Differential expression of domain III neutralizing epitopes on the envelope proteins of West Nile virus strains. . Virology 335:, 99–105. [CrossRef] [PubMed]
    [Google Scholar]
  27. Lvov D. K. , Butenko A. M. , Gromashevsky V. L. , Kovtunov A. I. , Prilipov A. G. , Kinney R. , Aristova V. A. , Dzharkenov A. F. , Samokhvalov E. I. . & other authors ( 2004; ). West Nile virus and other zoonotic viruses in Russia: examples of emerging-reemerging situations. . Arch Virol Suppl 18:, 85–96.[PubMed]
    [Google Scholar]
  28. Mackenzie J. S. , Williams D. T. . ( 2009; ). The zoonotic flaviviruses of southern, south-eastern and eastern Asia, and Australasia: the potential for emergent viruses. . Zoonoses Public Health 56:, 338–356. [CrossRef] [PubMed]
    [Google Scholar]
  29. Mackenzie J. S. , Gubler D. J. , Petersen L. R. . ( 2004; ). Emerging flaviviruses: the spread and resurgence of Japanese encephalitis, West Nile and dengue viruses. . Nat Med 10: (Suppl.), S98–S109. [CrossRef] [PubMed]
    [Google Scholar]
  30. Martin D. P. , Lemey P. , Lott M. , Moulton V. , Posada D. , Lefeuvre P. . ( 2010; ). rdp3: a flexible and fast computer program for analyzing recombination. . Bioinformatics 26:, 2462–2463. [CrossRef] [PubMed]
    [Google Scholar]
  31. May F. J. , Davis C. T. , Tesh R. B. , Barrett A. D. T. . ( 2011; ). Phylogeography of West Nile virus: from the cradle of evolution in Africa to Eurasia, Australia, and the Americas. . J Virol 85:, 2964–2974. [CrossRef] [PubMed]
    [Google Scholar]
  32. Miller M. A. , Pfeiffer W. , Schwartz T. . ( 2010; ). Creating the cipres Science Gateway for Inference of Large Phylogenetic Trees. . In Proceedings of the Gateway Computing Environments Workshop (GCE), pp. 1–8. New Orleans, LA.
    [Google Scholar]
  33. Murgue B. , Murri S. , Triki H. , Deubel V. , Zeller H. G. . ( 2001; ). West Nile in the Mediterranean basin: 1950-2000. . Ann N Y Acad Sci 951:, 117–126. [CrossRef] [PubMed]
    [Google Scholar]
  34. Papa A. . ( 2012; ). West Nile infections in Greece: an update. . Expert Reviews of Anti-Inpective Therapy 10, 743–750.[CrossRef]
    [Google Scholar]
  35. Papa A. , Bakonyi T. , Xanthopoulou K. , Vázquez A. , Tenorio A. , Nowotny N. . ( 2011a; ). Genetic characterization of West Nile virus lineage 2, Greece, 2010. . Emerg Infect Dis 17:, 920–922. [CrossRef] [PubMed]
    [Google Scholar]
  36. Papa A. , Xanthopoulou K. , Gewehr S. , Mourelatos S. . ( 2011b; ). Detection of West Nile virus lineage 2 in mosquitoes during a human outbreak in Greece. . Clin Microbiol Infect 17:, 1176–1180.[PubMed] [CrossRef]
    [Google Scholar]
  37. Platonov A. E. , Karan’ L. S. , Shopenskaia T. A. , Fedorova M. V. , Koliasnikova N. M. , Rusakova N. M. , Shishkina L. V. , Arshba T. E. , Zhuravlev V. I. . & other authors ( 2011; ). [Genotyping of West Nile fever virus strains circulating in southern Russia as an epidemiological investigation method: principles and results]. . Zh Mikrobiol Epidemiol Immunobiol 2:, 29–37.[PubMed]
    [Google Scholar]
  38. Pond S. L. K. , Frost S. D. W. . ( 2005; ). Datamonkey: rapid detection of selective pressure on individual sites of codon alignments. . Bioinformatics 21:, 2531–2533. [CrossRef] [PubMed]
    [Google Scholar]
  39. Scherret J. H. , Poidinger M. , Mackenzie J. S. , Broom A. K. , Deubel V. , Lipkin W. I. , Briese T. , Gould E. A. , Hall R. A. . ( 2001; ). The relationships between West Nile and Kunjin viruses. . Emerg Infect Dis 7:, 697–705.[PubMed] [CrossRef]
    [Google Scholar]
  40. Scherret J. H. , Mackenzie J. S. , Hall R. A. , Deubel V. , Gould E. A. . ( 2002; ). Phylogeny and molecular epidemiology of West Nile and Kunjin viruses. . Curr Top Microbiol Immunol 267:, 373–390. [CrossRef] [PubMed]
    [Google Scholar]
  41. Smithburn K. C. , Hughes T. P. , Burke A. W. , Paul J. H. . ( 1940; ). A neurotropic virus isolated from the blood of a native of Uganda. . Am J Trop Med 20:, 471–492.
    [Google Scholar]
  42. Vazquez A. , Sanchez-Seco M. P. , Ruiz S. , Molero F. , Hernandez L. , Moreno J. , Magallanes A. , Tejedor C. G. , Tenorio A. . ( 2010; ). Putative new lineage of West Nile virus, Spain. . Emerg Infect Dis 16:, 549–552. [CrossRef] [PubMed]
    [Google Scholar]
  43. Yamshchikov G. , Borisevich V. , Seregin A. , Chaporgina E. , Mishina M. , Mishin V. , Kwok C. W. , Yamshchikov V. . ( 2004; ). An attenuated West Nile prototype virus is highly immunogenic and protects against the deadly NY99 strain: a candidate for live WN vaccine development. . Virology 330:, 304–312. [CrossRef] [PubMed]
    [Google Scholar]
  44. Zhou Y. , Ray D. , Zhao Y. , Dong H. , Ren S. , Li Z. , Guo Y. , Bernard K. A. , Shi P. Y. , Li H. . ( 2007; ). Structure and function of flavivirus NS5 methyltransferase. . J Virol 81:, 3891–3903. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.046888-0
Loading
/content/journal/jgv/10.1099/vir.0.046888-0
Loading

Data & Media loading...

Supplements

Supplementary table 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error