1887

Abstract

The genus includes both vector-borne and no known vector (NKV) species, but the molecular determinants of transmission mode are not known. Conserved sequence differences between the two groups occur in 5′ and 3′ UTRs. To investigate the impact of these differences on transmission, chimeric genomes were generated, in which UTRs, UTRs+capsid, or the upper 3′ UTR stem–loop of mosquito-borne dengue virus (DENV) were replaced with homologous regions from NKV Modoc virus (MODV); the conserved pentanucleotide sequence (CPS) was also deleted from the DENV genome. Virus was not recovered following transfection of these genomes in three different cell types. However, DENV genomes in which the CPS or variable region (VR) of the 3′ UTR were replaced with MODV sequences were recovered and infected mosquitoes with similar efficiencies to DENV. These results demonstrate that neither vector-borne CPS nor VR is required for vector-borne transmission.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.046664-0
2013-04-01
2019-09-16
Loading full text...

Full text loading...

/deliver/fulltext/jgv/94/4/783.html?itemId=/content/journal/jgv/10.1099/vir.0.046664-0&mimeType=html&fmt=ahah

References

  1. Alvarez D. E. , De Lella Ezcurra A. L. , Fucito S. , Gamarnik A. V. . ( 2005; ). Role of RNA structures present at the 3′UTR of dengue virus on translation, RNA synthesis, and viral replication. . Virology 339:, 200–212. [CrossRef] [PubMed]
    [Google Scholar]
  2. Billoir F. , de Chesse R. , Tolou H. , Gould E. A. , de Micco P. , Gould E. A. , de Lamballerie X. . ( 2000; ). Phylogeny of the genus Flavivirus using complete coding sequences of arthropod-borne viruses and viruses with no known vector. . J Gen Virol 81:, 2339.[PubMed]
    [Google Scholar]
  3. Blackwell J. L. , Brinton M. A. . ( 1995; ). BHK cell proteins that bind to the 3′ stem–loop structure of the West Nile virus genome RNA. . J Virol 69:, 5650–5658.[PubMed]
    [Google Scholar]
  4. Blaney J. E. Jr , Johnson D. H. , Firestone C. Y. , Hanson C. T. , Murphy B. R. , Whitehead S. S. . ( 2001; ). Chemical mutagenesis of dengue virus type 4 yields mutant viruses which are temperature sensitive in Vero cells or human liver cells and attenuated in mice. . J Virol 75:, 9731–9740. [CrossRef] [PubMed]
    [Google Scholar]
  5. Blaney J. E. Jr , Manipon G. G. , Firestone C. Y. , Johnson D. H. , Hanson C. T. , Murphy B. R. , Whitehead S. S. . ( 2003; ). Mutations which enhance the replication of dengue virus type 4 and an antigenic chimeric dengue virus type 2/4 vaccine candidate in Vero cells. . Vaccine 21:, 4317–4327. [CrossRef] [PubMed]
    [Google Scholar]
  6. Chambers T. J. , Hahn C. S. , Galler R. , Rice C. M. . ( 1990; ). Flavivirus genome organization, expression, and replication. . Annu Rev Microbiol 44:, 649–688. [CrossRef] [PubMed]
    [Google Scholar]
  7. Charlier N. , Leyssen P. , Pleij C. W. , Lemey P. , Billoir F. , Van Laethem K. , Vandamme A. M. , De Clercq E. , de Lamballerie X. , Neyts J. . ( 2002; ). Complete genome sequence of Montana Myotis leukoencephalitis virus, phylogenetic analysis and comparative study of the 3′ untranslated region of flaviviruses with no known vector. . J Gen Virol 83:, 1875–1885.[PubMed]
    [Google Scholar]
  8. Charlier N. , Molenkamp R. , Leyssen P. , Paeshuyse J. , Drosten C. , Panning M. , De Clercq E. , Bredenbeek P. J. , Neyts J. . ( 2004; ). Exchanging the yellow fever virus envelope proteins with Modoc virus prM and E proteins results in a chimeric virus that is neuroinvasive in SCID mice. . J Virol 78:, 7418–7426. [CrossRef] [PubMed]
    [Google Scholar]
  9. Charlier N. , Davidson A. , Dallmeier K. , Molenkamp R. , De Clercq E. , Neyts J. . ( 2010; ). Replication of not-known-vector flaviviruses in mosquito cells is restricted by intracellular host factors rather than by the viral envelope proteins. . J Gen Virol 91:, 1693–1697. [CrossRef] [PubMed]
    [Google Scholar]
  10. Chen C. J. , Kuo M. D. , Chien L. J. , Hsu S. L. , Wang Y. M. , Lin J. H. . ( 1997; ). RNA–protein interactions: involvement of NS3, NS5, and 3′ noncoding regions of Japanese encephalitis virus genomic RNA. . J Virol 71:, 3466–3473.[PubMed]
    [Google Scholar]
  11. Cook S. , Holmes E. C. . ( 2006; ). A multigene analysis of the phylogenetic relationships among the flaviviruses (family: Flaviviridae) and the evolution of vector transmission. . Arch Virol 151:, 309–325. [CrossRef] [PubMed]
    [Google Scholar]
  12. De Nova-Ocampo M. , Villegas-Sepúlveda N. , del Angel R. M. . ( 2002; ). Translation elongation factor-1α, La, and PTB interact with the 3′ untranslated region of dengue 4 virus RNA. . Virology 295:, 337–347. [CrossRef] [PubMed]
    [Google Scholar]
  13. Durbin A. P. , Karron R. A. , Sun W. , Vaughn D. W. , Reynolds M. J. , Perreault J. R. , Thumar B. , Men R. , Lai C. J. . & other authors ( 2001; ). Attenuation and immunogenicity in humans of a live dengue virus type-4 vaccine candidate with a 30 nucleotide deletion in its 3′-untranslated region. . Am J Trop Med Hyg 65:, 405–413.[PubMed]
    [Google Scholar]
  14. Elghonemy S. , Davis W. G. , Brinton M. A. . ( 2005; ). The majority of the nucleotides in the top loop of the genomic 3′ terminal stem loop structure are cis-acting in a West Nile virus infectious clone. . Virology 331:, 238–246. [CrossRef] [PubMed]
    [Google Scholar]
  15. Engel A. R. , Mitzel D. N. , Hanson C. T. , Wolfinbarger J. B. , Bloom M. E. , Pletnev A. G. . ( 2011; ). Chimeric tick-borne encephalitis/dengue virus is attenuated in Ixodes scapularis ticks and Aedes aegypti mosquitoes. . Vector Borne Zoonotic Dis 11:, 665–674. [CrossRef] [PubMed]
    [Google Scholar]
  16. Fairbrother A. , Yuill T. M. . ( 1987; ). Experimental infection and horizontal transmission of Modoc virus in deer mice (Peromyscus maniculatus). . J Wildl Dis 23:, 179–185.[PubMed] [CrossRef]
    [Google Scholar]
  17. Gaunt M. W. , Sall A. A. , de Lamballerie X. , Falconar A. K. , Dzhivanian T. I. , Gould E. A. . ( 2001; ). Phylogenetic relationships of flaviviruses correlate with their epidemiology, disease association and biogeography. . J Gen Virol 82:, 1867–1876.[PubMed]
    [Google Scholar]
  18. Gritsun T. S. , Gould E. A. . ( 2006; ). Origin and evolution of 3′UTR of flaviviruses: long direct repeats as a basis for the formation of secondary structures and their significance for virus transmission. . Adv Virus Res 69:, 203–248. [CrossRef] [PubMed]
    [Google Scholar]
  19. Gubler D. J. . ( 2006; ). Dengue/dengue haemorrhagic fever: history and current status. . Novartis Found Symp 277:, 3–16. discussion 16–22, 71–73, 251–253. [CrossRef] [PubMed]
    [Google Scholar]
  20. Hanley K. A. , Lee J. J. , Blaney J. E. Jr , Murphy B. R. , Whitehead S. S. . ( 2002; ). Paired charge-to-alanine mutagenesis of dengue virus type 4 NS5 generates mutants with temperature-sensitive, host range, and mouse attenuation phenotypes. . J Virol 76:, 525–531. [CrossRef] [PubMed]
    [Google Scholar]
  21. Hanley K. A. , Nelson J. T. , Schirtzinger E. E. , Whitehead S. S. , Hanson C. T. . ( 2008; ). Superior infectivity for mosquito vectors contributes to competitive displacement among strains of dengue virus. . BMC Ecol 8:, 1. [CrossRef] [PubMed]
    [Google Scholar]
  22. Hendricks D. A. , Hardy J. L. , Reeves W. C. . ( 1983; ). Comparison of biological properties of St. Louis encephalitis and Rio bravo viruses. . Am J Trop Med Hyg 32:, 602–609.[PubMed]
    [Google Scholar]
  23. Huang C. Y. , Silengo S. J. , Whiteman M. C. , Kinney R. M. . ( 2005; ). Chimeric dengue 2 PDK-53/West Nile NY99 viruses retain the phenotypic attenuation markers of the candidate PDK-53 vaccine virus and protect mice against lethal challenge with West Nile virus. . J Virol 79:, 7300–7310. [CrossRef] [PubMed]
    [Google Scholar]
  24. Johnson H. N. . ( 1967; ). Ecological implications of antigenically related mammalian viruses for which arthropod vectors are unknown and avian associated soft tick viruses. . Jpn J Med Sci Biol 20: (Suppl.), 160–166.[PubMed]
    [Google Scholar]
  25. Khromykh A. A. , Meka H. , Guyatt K. J. , Westaway E. G. . ( 2001; ). Essential role of cyclization sequences in flavivirus RNA replication. . J Virol 75:, 6719–6728. [CrossRef] [PubMed]
    [Google Scholar]
  26. Kofler R. M. , Hoenninger V. M. , Thurner C. , Mandl C. W. . ( 2006; ). Functional analysis of the tick-borne encephalitis virus cyclization elements indicates major differences between mosquito-borne and tick-borne flaviviruses. . J Virol 80:, 4099–4113. [CrossRef] [PubMed]
    [Google Scholar]
  27. Kuno G. . ( 2007; ). Host range specificity of flaviviruses: correlation with in vitro replication. . J Med Entomol 44:, 93–101. [CrossRef] [PubMed]
    [Google Scholar]
  28. Lai M. M. . ( 1998; ). Cellular factors in the transcription and replication of viral RNA genomes: a parallel to DNA-dependent RNA transcription. . Virology 244:, 1–12. [CrossRef] [PubMed]
    [Google Scholar]
  29. Lai C. J. , Monath T. P. . ( 2003; ). Chimeric flaviviruses: novel vaccines against dengue fever, tick-borne encephalitis, and Japanese encephalitis. . Adv Virus Res 61:, 469–509. [CrossRef] [PubMed]
    [Google Scholar]
  30. Lawrie C. H. , Uzcátegui N. Y. , Armesto M. , Bell-Sakyi L. , Gould E. A. . ( 2004; ). Susceptibility of mosquito and tick cell lines to infection with various flaviviruses. . Med Vet Entomol 18:, 268–274. [CrossRef] [PubMed]
    [Google Scholar]
  31. Leyssen P. , Charlier N. , Lemey P. , Billoir F. , Vandamme A. M. , De Clercq E. , de Lamballerie X. , Neyts J. . ( 2002; ). Complete genome sequence, taxonomic assignment, and comparative analysis of the untranslated regions of the Modoc virus, a flavivirus with no known vector. . Virology 293:, 125–140. [CrossRef] [PubMed]
    [Google Scholar]
  32. Mackenzie J. M. , Khromykh A. A. , Jones M. K. , Westaway E. G. . ( 1998; ). Subcellular localization and some biochemical properties of the flavivirus Kunjin non-structural proteins NS2A and NS4A. . Virology 245:, 203–215. [CrossRef] [PubMed]
    [Google Scholar]
  33. Mackenzie J. S. , Gubler D. J. , Petersen L. R. . ( 2004; ). Emerging flaviviruses: the spread and resurgence of Japanese encephalitis, West Nile and dengue viruses. . Nat Med 10: (Suppl.), S98–S109. [CrossRef] [PubMed]
    [Google Scholar]
  34. Mandl C. W. , Holzmann H. , Meixner T. , Rauscher S. , Stadler P. F. , Allison S. L. , Heinz F. X. . ( 1998; ). Spontaneous and engineered deletions in the 3′ non-coding region of tick-borne encephalitis virus: construction of highly attenuated mutants of a flavivirus. . J Virol 72:, 2132–2140.[PubMed]
    [Google Scholar]
  35. Markoff L. . ( 2003; ). 5′- and 3′-non-coding regions in flavivirus RNA. . Adv Virus Res 59:, 177–228. [CrossRef] [PubMed]
    [Google Scholar]
  36. Men R. , Bray M. , Clark D. , Chanock R. M. , Lai C. J. . ( 1996; ). Dengue type 4 virus mutants containing deletions in the 3′ non-coding region of the RNA genome: analysis of growth restriction in cell culture and altered viremia pattern and immunogenicity in rhesus monkeys. . J Virol 70:, 3930–3937.[PubMed]
    [Google Scholar]
  37. Pankhong P. , Weiner D. B. , Ramanathan M. P. , Nisalak A. , Kalayanarooj S. , Nimmannitya S. , Attatippaholkun W. . ( 2009; ). Molecular genetic relationship of the 3′ untranslated region among Thai dengue-3 virus, Bangkok isolates, during 1973–2000. . DNA Cell Biol 28:, 481–491. [CrossRef] [PubMed]
    [Google Scholar]
  38. Pletnev A. G. , Putnak R. , Speicher J. , Wagar E. J. , Vaughn D. W. . ( 2002; ). West Nile virus/dengue type 4 virus chimeras that are reduced in neurovirulence and peripheral virulence without loss of immunogenicity or protective efficacy. . Proc Natl Acad Sci U S A 99:, 3036–3041. [CrossRef] [PubMed]
    [Google Scholar]
  39. Proutski V. , Gaunt M. W. , Gould E. A. , Holmes E. C. . ( 1997; ). Secondary structure of the 3′-untranslated region of yellow fever virus: implications for virulence, attenuation and vaccine development. . J Gen Virol 78:, 1543–1549.[PubMed]
    [Google Scholar]
  40. Rice C. M. . ( 1996; ). Flaviviridae: the viruses and their replication. . In Fields Virology, , 3rd edn., pp. 931–959. Edited by Fields B. N. , Knipe D. M. , Howley P. M. , Chanock R. M. , Melnick J. L. , Monath T. P. , Roizman B. , Straus S. E. . . Philadelphia:: Lippincott-Raven Publishers;.
    [Google Scholar]
  41. Silva P. A. , Molenkamp R. , Dalebout T. J. , Charlier N. , Neyts J. H. , Spaan W. J. , Bredenbeek P. J. . ( 2007; ). Conservation of the pentanucleotide motif at the top of the yellow fever virus 17D 3′ stem–loop structure is not required for replication. . J Gen Virol 88:, 1738–1747. [CrossRef] [PubMed]
    [Google Scholar]
  42. Tajima S. , Nukui Y. , Ito M. , Takasaki T. , Kurane I. . ( 2006; ). Nineteen nucleotides in the variable region of 3′ non-translated region are dispensable for the replication of dengue type 1 virus in vitro . . Virus Res 116:, 38–44. [CrossRef] [PubMed]
    [Google Scholar]
  43. Tajima S. , Nukui Y. , Takasaki T. , Kurane I. . ( 2007; ). Characterization of the variable region in the 3′ non-translated region of dengue type 1 virus. . J Gen Virol 88:, 2214–2222. [CrossRef] [PubMed]
    [Google Scholar]
  44. Tilgner M. , Deas T. S. , Shi P. Y. . ( 2005; ). The flavivirus-conserved penta-nucleotide in the 3′ stem–loop of the West Nile virus genome requires a specific sequence and structure for RNA synthesis, but not for viral translation. . Virology 331:, 375–386. [CrossRef] [PubMed]
    [Google Scholar]
  45. Troyer J. M. , Hanley K. A. , Whitehead S. S. , Strickman D. , Karron R. A. , Durbin A. P. , Murphy B. R. . ( 2001; ). A live attenuated recombinant dengue-4 virus vaccine candidate with restricted capacity for dissemination in mosquitoes and lack of transmission from vaccinees to mosquitoes. . Am J Trop Med Hyg 65:, 414–419.[PubMed]
    [Google Scholar]
  46. Tumban E. , Mitzel D. N. , Maes N. E. , Hanson C. T. , Whitehead S. S. , Hanley K. A. . ( 2011; ). Replacement of the 3′ untranslated variable region of mosquito-borne dengue virus with that of tick-borne Langat virus does not alter vector specificity. . J Gen Virol 92:, 841–848. [CrossRef] [PubMed]
    [Google Scholar]
  47. Umareddy I. , Chao A. , Sampath A. , Gu F. , Vasudevan S. G. . ( 2006; ). Dengue virus NS4B interacts with NS3 and dissociates it from single-stranded RNA. . J Gen Virol 87:, 2605–2614. [CrossRef] [PubMed]
    [Google Scholar]
  48. Ward A. M. , Bidet K. , Yinglin A. , Ler S. G. , Hogue K. , Blackstock W. , Gunaratne J. , Garcia-Blanco M. A. . ( 2011; ). Quantitative mass spectrometry of DENV-2 RNA-interacting proteins reveals that the DEAD-box RNA helicase DDX6 binds the DB1 and DB2 3′ UTR structures. . RNA Biol 8:, 1173–1186. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.046664-0
Loading
/content/journal/jgv/10.1099/vir.0.046664-0
Loading

Data & Media loading...

Supplementary Material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error