1887

Abstract

Human immunodeficiency virus type 1 (HIV-1) persistently infected cell lines are characterized by the continuous viral production without cytopathic effect. However, it is not completely clear if this production is contributed only by viral transcription or also by new cycles of viral replication. We studied an HIV-1 persistently infected cell line, designated H61-D, providing evidence of new replication cycles as sustained by: (i) a decrease in viral production, measured by p24 protein, after treatment of the culture with 3′-azydo-3′-deoxythymydine; (ii) detection of new integration events in the course of cell culture, and (iii) finding of two-long-terminal repeat circles in the cells. H61-D cells were not infected by cell-free virus, but infection was possible by co-culture with another productive-infected cell line. In conclusion, ongoing viral replication is taking place in H61-D persistent cells and new infections are mediated by a cell-to-cell spread mechanism.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.046573-0
2013-05-01
2019-12-06
Loading full text...

Full text loading...

/deliver/fulltext/jgv/94/5/944.html?itemId=/content/journal/jgv/10.1099/vir.0.046573-0&mimeType=html&fmt=ahah

References

  1. Altfeld M., Allen T. M., Yu X. G., Johnston M. N., Agrawal D., Korber B. T., Montefiori D. C., O’Connor D. H., Davis B. T.. & other authors ( 2002;). HIV-1 superinfection despite broad CD8+ T-cell responses containing replication of the primary virus. . Nature 420:, 434–439. [CrossRef][PubMed]
    [Google Scholar]
  2. Bailey J. R., Sedaghat A. R., Kieffer T., Brennan T., Lee P. K., Wind-Rotolo M., Haggerty C. M., Kamireddi A. R., Liu Y.. & other authors ( 2006;). Residual human immunodeficiency virus type 1 viremia in some patients on antiretroviral therapy is dominated by a small number of invariant clones rarely found in circulating CD4+ T cells. . J Virol 80:, 6441–6457. [CrossRef][PubMed]
    [Google Scholar]
  3. Besansky N. J., Butera S. T., Sinha S., Folks T. M.. ( 1991;). Unintegrated human immunodeficiency virus type 1 DNA in chronically infected cell lines is not correlated with surface CD4 expression. . J Virol 65:, 2695–2698.[PubMed]
    [Google Scholar]
  4. Blanco J., Bosch B., Fernández-Figueras M. T., Barretina J., Clotet B., Esté J. A.. ( 2004;). High level of coreceptor-independent HIV transfer induced by contacts between primary CD4 T cells. . J Biol Chem 279:, 51305–51314. [CrossRef][PubMed]
    [Google Scholar]
  5. Brennan T. P., Woods J. O., Sedaghat A. R., Siliciano J. D., Siliciano R. F., Wilke C. O.. ( 2009;). Analysis of human immunodeficiency virus type 1 viremia and provirus in resting CD4+ T cells reveals a novel source of residual viremia in patients on antiretroviral therapy. . J Virol 83:, 8470–8481. [CrossRef][PubMed]
    [Google Scholar]
  6. Brown P. O., Bowerman B., Varmus H. E., Bishop J. M.. ( 1989;). Retroviral integration: structure of the initial covalent product and its precursor, and a role for the viral IN protein. . Proc Natl Acad Sci U S A 86:, 2525–2529. [CrossRef][PubMed]
    [Google Scholar]
  7. Bukrinsky M. I., Sharova N., Dempsey M. P., Stanwick T. L., Bukrinskaya A. G., Haggerty S., Stevenson M.. ( 1992;). Active nuclear import of human immunodeficiency virus type 1 preintegration complexes. . Proc Natl Acad Sci U S A 89:, 6580–6584. [CrossRef][PubMed]
    [Google Scholar]
  8. Butera S. T., Roberts B. D., Lam L., Hodge T., Folks T. M.. ( 1994;). Human immunodeficiency virus type 1 RNA expression by four chronically infected cell lines indicates multiple mechanisms of latency. . J Virol 68:, 2726–2730.[PubMed]
    [Google Scholar]
  9. Butler S. L., Johnson E. P., Bushman F. D.. ( 2002;). Human immunodeficiency virus cDNA metabolism: notable stability of two-long terminal repeat circles. . J Virol 76:, 3739–3747. [CrossRef][PubMed]
    [Google Scholar]
  10. Buzón M. J., Massanella M., Llibre J. M., Esteve A., Dahl V., Puertas M. C., Gatell J. M., Domingo P., Paredes R.. & other authors ( 2010;). HIV-1 replication and immune dynamics are affected by raltegravir intensification of HAART-suppressed subjects. . Nat Med 16:, 460–465. [CrossRef][PubMed]
    [Google Scholar]
  11. Chen W., Baric R. S.. ( 1996;). Molecular anatomy of mouse hepatitis virus persistence: coevolution of increased host cell resistance and virus virulence. . J Virol 70:, 3947–3960.[PubMed]
    [Google Scholar]
  12. Chen P., Hübner W., Spinelli M. A., Chen B. K.. ( 2007;). Predominant mode of human immunodeficiency virus transfer between T cells is mediated by sustained Env-dependent neutralization-resistant virological synapses. . J Virol 81:, 12582–12595. [CrossRef][PubMed]
    [Google Scholar]
  13. Chohan B. H., Piantadosi A., Overbaugh J.. ( 2010;). HIV-1 superinfection and its implications for vaccine design. . Curr HIV Res 8:, 596–601. [CrossRef][PubMed]
    [Google Scholar]
  14. Chun T. W., Carruth L., Finzi D., Shen X., DiGiuseppe J. A., Taylor H., Hermankova M., Chadwick K., Margolick J.. & other authors ( 1997a;). Quantification of latent tissue reservoirs and total body viral load in HIV-1 infection. . Nature 387:, 183–188. [CrossRef][PubMed]
    [Google Scholar]
  15. Chun T. W., Stuyver L., Mizell S. B., Ehler L. A., Mican J. A. M., Baseler M., Lloyd A. L., Nowak M. A., Fauci A. S.. ( 1997b;). Presence of an inducible HIV-1 latent reservoir during highly active antiretroviral therapy. . Proc Natl Acad Sci U S A 94:, 13193–13197. [CrossRef][PubMed]
    [Google Scholar]
  16. Derdeyn C. A., Decker J. M., Sfakianos J. N., Wu X., O’Brien W. A., Ratner L., Kappes J. C., Shaw G. M., Hunter E.. ( 2000;). Sensitivity of human immunodeficiency virus type 1 to the fusion inhibitor T-20 is modulated by coreceptor specificity defined by the V3 loop of gp120. . J Virol 74:, 8358–8367. [CrossRef][PubMed]
    [Google Scholar]
  17. Dimitrov D. S., Willey R. L., Sato H., Chang L. J., Blumenthal R., Martin M. A.. ( 1993;). Quantitation of human immunodeficiency virus type 1 infection kinetics. . J Virol 67:, 2182–2190.[PubMed]
    [Google Scholar]
  18. Dornadula G., Zhang H., VanUitert B., Stern J., Livornese L. Jr, Ingerman M. J., Witek J., Kedanis R. J., Natkin J.. & other authors ( 1999;). Residual HIV-1 RNA in blood plasma of patients taking suppressive highly active antiretroviral therapy. . JAMA 282:, 1627–1632. [CrossRef][PubMed]
    [Google Scholar]
  19. Eisele E., Siliciano R. F.. ( 2012;). Redefining the viral reservoirs that prevent HIV-1 eradication. . Immunity 37:, 377–388. [CrossRef][PubMed]
    [Google Scholar]
  20. Eugenin E. A., Gaskill P. J., Berman J. W.. ( 2009;). Tunneling nanotubes (TNT) are induced by HIV-infection of macrophages: a potential mechanism for intercellular HIV trafficking. . Cell Immunol 254:, 142–148. [CrossRef][PubMed]
    [Google Scholar]
  21. Fernández Larrosa P. N., Ceballos A., Andreani G., Marquina S., Martínez Peralta L., Rabinovich R. D.. ( 2006;). Viral reactivation and pseudotype production in an in vitro superinfection system with two different strains of HIV-1. . Arch Virol 151:, 651–662. [CrossRef][PubMed]
    [Google Scholar]
  22. Folks T. M., Justement J., Kinter A., Schnittman S., Orenstein J., Poli G., Fauci A. S.. ( 1988;). Characterization of a promonocyte clone chronically infected with HIV and inducible by 13-phorbol-12-myristate acetate. . J Immunol 140:, 1117–1122.[PubMed]
    [Google Scholar]
  23. Folks T. M., Clouse K. A., Justement J., Rabson A., Duh E., Kehrl J. H., Fauci A. S.. ( 1989;). Tumor necrosis factor alpha induces expression of human immunodeficiency virus in a chronically infected T-cell clone. . Proc Natl Acad Sci U S A 86:, 2365–2368. [CrossRef][PubMed]
    [Google Scholar]
  24. Garcia-Perez J., Sanchez-Palomino S., Perez-Olmeda M., Fernandez B., Alcami J.. ( 2007;). A new strategy based on recombinant viruses as a tool for assessing drug susceptibility of human immunodeficiency virus type 1. . J Med Virol 79:, 127–137. [CrossRef][PubMed]
    [Google Scholar]
  25. Gosselin A. S., Simonin Y., Guivel-Benhassine F., Rincheval V., Vayssière J. L., Mignotte B., Colbère-Garapin F., Couderc T., Blondel B.. ( 2003;). Poliovirus-induced apoptosis is reduced in cells expressing a mutant CD155 selected during persistent poliovirus infection in neuroblastoma cells. . J Virol 77:, 790–798. [CrossRef][PubMed]
    [Google Scholar]
  26. Gottlieb G. S., Nickle D. C., Jensen M. A., Wong K. G., Grobler J., Li F., Liu S. L., Rademeyer C., Learn G. H.. & other authors ( 2004;). Dual HIV-1 infection associated with rapid disease progression. . Lancet 363:, 619–622. [CrossRef][PubMed]
    [Google Scholar]
  27. Günthard H. F., Frost S. D., Leigh-Brown A. J., Ignacio C. C., Kee K., Perelson A. S., Spina C. A., Havlir D. V., Hezareh M.. & other authors ( 1999;). Evolution of envelope sequences of human immunodeficiency virus type 1 in cellular reservoirs in the setting of potent antiviral therapy. . J Virol 73:, 9404–9412.[PubMed]
    [Google Scholar]
  28. Haase A. T.. ( 1999;). Population biology of HIV-1 infection: viral and CD4+ T cell demographics and dynamics in lymphatic tissues. . Annu Rev Immunol 17:, 625–656. [CrossRef][PubMed]
    [Google Scholar]
  29. Han Y., Lassen K., Monie D., Sedaghat A. R., Shimoji S., Liu X., Pierson T. C., Margolick J. B., Siliciano R. F., Siliciano J. D.. ( 2004;). Resting CD4+ T cells from human immunodeficiency virus type 1 (HIV-1)-infected individuals carry integrated HIV-1 genomes within actively transcribed host genes. . J Virol 78:, 6122–6133. [CrossRef][PubMed]
    [Google Scholar]
  30. Hübner W., McNerney G. P., Chen P., Dale B. M., Gordon R. E., Chuang F. Y., Li X. D., Asmuth D. M., Huser T., Chen B. K.. ( 2009;). Quantitative 3D video microscopy of HIV transfer across T cell virological synapses. . Science 323:, 1743–1747. [CrossRef][PubMed]
    [Google Scholar]
  31. Iwabu Y., Goto T., Tsuji S., Warachit J., Li G. M., Shoji S., Kameoka M., Ikuta K.. ( 2006;). Superinfection of human immunodeficiency virus type 1 (HIV-1) to cell clone persistently infected with defective virus induces production of highly cytopathogenic HIV-1. . Microbes Infect 8:, 1773–1782. [CrossRef][PubMed]
    [Google Scholar]
  32. Jordan A., Bisgrove D., Verdin E.. ( 2003;). HIV reproducibly establishes a latent infection after acute infection of T cells in vitro. . EMBO J 22:, 1868–1877. [CrossRef][PubMed]
    [Google Scholar]
  33. Jost S., Bernard M. C., Kaiser L., Yerly S., Hirschel B., Samri A., Autran B., Goh L. E., Perrin L.. ( 2002;). A patient with HIV-1 superinfection. . N Engl J Med 347:, 731–736. [CrossRef][PubMed]
    [Google Scholar]
  34. Julias J. G., McWilliams M. J., Sarafianos S. G., Arnold E., Hughes S. H.. ( 2002;). Mutations in the RNase H domain of HIV-1 reverse transcriptase affect the initiation of DNA synthesis and the specificity of RNase H cleavage in vivo. . Proc Natl Acad Sci U S A 99:, 9515–9520. [CrossRef][PubMed]
    [Google Scholar]
  35. Kauder S. E., Bosque A., Lindqvist A., Planelles V., Verdin E.. ( 2009;). Epigenetic regulation of HIV-1 latency by cytosine methylation. . PLoS Pathog 5:, e1000495. [CrossRef][PubMed]
    [Google Scholar]
  36. Kim J. H., McLinden R. J., Mosca J. D., Burke D. S., Boswell R. N., Birx D. L., Redfield R. R.. ( 1996;). Transcriptional effects of superinfection in HIV chronically infected T cells: studies in dually infected clones. . J Acquir Immune Defic Syndr Hum Retrovirol 12:, 329–342. [CrossRef][PubMed]
    [Google Scholar]
  37. Lenasi T., Contreras X., Peterlin B. M.. ( 2008;). Transcriptional interference antagonizes proviral gene expression to promote HIV latency. . Cell Host Microbe 4:, 123–133. [CrossRef][PubMed]
    [Google Scholar]
  38. Mandal D., Dash C., Le Grice S. F., Prasad V. R.. ( 2006;). Analysis of HIV-1 replication block due to substitutions at F61 residue of reverse transcriptase reveals additional defects involving the RNase H function. . Nucleic Acids Res 34:, 2853–2863. [CrossRef][PubMed]
    [Google Scholar]
  39. Marquina S., Libonatti O., Ceballos A., Gómez Carrillo M., Martínez Peralta L., Rabinovich R. D.. ( 1997;). Different integrated and unintegrated HIV-1 DNA after superinfection and cell to cell transmission. . Acta Physiol Pharmacol Ther Latinoam 47:, 245–250.[PubMed]
    [Google Scholar]
  40. Martín Hernández A. M., Carrillo E. C., Sevilla N., Domingo E.. ( 1994;). Rapid cell variation can determine the establishment of a persistent viral infection. . Proc Natl Acad Sci U S A 91:, 3705–3709. [CrossRef][PubMed]
    [Google Scholar]
  41. Nethe M., Berkhout B., van der Kuyl A. C.. ( 2005;). Retroviral superinfection resistance. . Retrovirology 2:, 52. [CrossRef][PubMed]
    [Google Scholar]
  42. Olivares I., Casado Herrero C., Iglesias-Ussel M. D., Dietrich U., López Galíndez C.. ( 1998;). Complete sequence of an infectious molecular clone derived from a Spanish HIV type I isolate. . AIDS Res Hum Retroviruses 14:, 1649–1651. [CrossRef][PubMed]
    [Google Scholar]
  43. Ott D. E., Nigida S. M. Jr, Henderson L. E., Arthur L. O.. ( 1995;). The majority of cells are superinfected in a cloned cell line that produces high levels of human immunodeficiency virus type 1 strain MN. . J Virol 69:, 2443–2450.[PubMed]
    [Google Scholar]
  44. Palmer S., Maldarelli F., Wiegand A., Bernstein B., Hanna G. J., Brun S. C., Kempf D. J., Mellors J. W., Coffin J. M., King M. S.. ( 2008;). Low-level viremia persists for at least 7 years in patients on suppressive antiretroviral therapy. . Proc Natl Acad Sci U S A 105:, 3879–3884. [CrossRef][PubMed]
    [Google Scholar]
  45. Pernas M., Casado C., Fuentes R., Pérez-Elías M. J., López-Galíndez C.. ( 2006;). A dual superinfection and recombination within HIV-1 subtype B 12 years after primoinfection. . J Acquir Immune Defic Syndr 42:, 12–18. [CrossRef][PubMed]
    [Google Scholar]
  46. Pierson T. C., Kieffer T. L., Ruff C. T., Buck C., Gange S. J., Siliciano R. F.. ( 2002;). Intrinsic stability of episomal circles formed during human immunodeficiency virus type 1 replication. . J Virol 76:, 4138–4144. [CrossRef][PubMed]
    [Google Scholar]
  47. Platt E. J., Kozak S. L., Durnin J. P., Hope T. J., Kabat D.. ( 2010;). Rapid dissociation of HIV-1 from cultured cells severely limits infectivity assays, causes the inactivation ascribed to entry inhibitors, and masks the inherently high level of infectivity of virions. . J Virol 84:, 3106–3110. [CrossRef][PubMed]
    [Google Scholar]
  48. Randolph C. A., Champoux J. J.. ( 1993;). The majority of simian immunodeficiency virus/mne circle junctions result from ligation of unintegrated viral DNA ends that are aberrant for integration. . Virology 194:, 851–854. [CrossRef][PubMed]
    [Google Scholar]
  49. Ratner L., Gallo R. C., Wong-Staal F.. ( 1985;). HTLV-III, LAV, ARV are variants of same AIDS virus. . Nature 313:, 636–637. [CrossRef][PubMed]
    [Google Scholar]
  50. Robinzon S., Dafa-Berger A., Dyer M. D., Paeper B., Proll S. C., Teal T. H., Rom S., Fishman D., Rager-Zisman B., Katze M. G.. ( 2009;). Impaired cholesterol biosynthesis in a neuronal cell line persistently infected with measles virus. . J Virol 83:, 5495–5504. [CrossRef][PubMed]
    [Google Scholar]
  51. Ron D., Tal J.. ( 1985;). Coevolution of cells and virus as a mechanism for the persistence of lymphotropic minute virus of mice in L-cells. . J Virol 55:, 424–430.[PubMed]
    [Google Scholar]
  52. Saksena N. K., Wang B., Zhou L., Soedjono M., Ho Y. S., Conceicao V.. ( 2010;). HIV reservoirs in vivo and new strategies for possible eradication of HIV from the reservoir sites. . HIV AIDS (Auckl) 2:, 103–122. [CrossRef][PubMed]
    [Google Scholar]
  53. Sánchez-Jiménez C., Olivares I., de Ávila Lucas A. I., Toledano V., Gutiérrez-Rivas M., Lorenzo-Redondo R., Grande-Pérez A., Domingo E., López-Galíndez C.. ( 2012;). Mutagen-mediated enhancement of HIV-1 replication in persistently infected cells. . Virology 424:, 147–153. [CrossRef][PubMed]
    [Google Scholar]
  54. Sanchez-Merino V., Muñoz L., Pérez-Pastrana M. E., Herrera M. I., Olivares I., Lopez-Galindez C.. ( 2007;). Genetic changes associated with distinct patterns of HIV type 1 persistence in chronically infected cell lines. . AIDS Res Hum Retroviruses 23:, 251–260. [CrossRef][PubMed]
    [Google Scholar]
  55. Sánchez-Palomino S., Rojas J. M., Martínez M. A., Fenyö E. M., Nájera R., Domingo E., López-Galíndez C.. ( 1993;). Dilute passage promotes expression of genetic and phenotypic variants of human immunodeficiency virus type 1 in cell culture. . J Virol 67:, 2938–2943.[PubMed]
    [Google Scholar]
  56. Sattentau Q.. ( 2008;). Avoiding the void: cell-to-cell spread of human viruses. . Nat Rev Microbiol 6:, 815–826. [CrossRef][PubMed]
    [Google Scholar]
  57. Sharkey M. E., Teo I., Greenough T., Sharova N., Luzuriaga K., Sullivan J. L., Bucy R. P., Kostrikis L. G., Haase A.. & other authors ( 2000;). Persistence of episomal HIV-1 infection intermediates in patients on highly active anti-retroviral therapy. . Nat Med 6:, 76–81. [CrossRef][PubMed]
    [Google Scholar]
  58. Sherer N. M., Lehmann M. J., Jimenez-Soto L. F., Horensavitz C., Pypaert M., Mothes W.. ( 2007;). Retroviruses can establish filopodial bridges for efficient cell-to-cell transmission. . Nat Cell Biol 9:, 310–315. [CrossRef][PubMed]
    [Google Scholar]
  59. Sigal A., Kim J. T., Balazs A. B., Dekel E., Mayo A., Milo R., Baltimore D.. ( 2011;). Cell-to-cell spread of HIV permits ongoing replication despite antiretroviral therapy. . Nature 477:, 95–98. [CrossRef][PubMed]
    [Google Scholar]
  60. Svarovskaia E. S., Barr R., Zhang X., Pais G. C., Marchand C., Pommier Y., Burke T. R. Jr, Pathak V. K.. ( 2004;). Azido-containing diketo acid derivatives inhibit human immunodeficiency virus type 1 integrase in vivo and influence the frequency of deletions at two-long-terminal-repeat-circle junctions. . J Virol 78:, 3210–3222. [CrossRef][PubMed]
    [Google Scholar]
  61. Thomson M. M., Pérez-Alvarez L., Nájera R.. ( 2002;). Molecular epidemiology of HIV-1 genetic forms and its significance for vaccine development and therapy. . Lancet Infect Dis 2:, 461–471. [CrossRef][PubMed]
    [Google Scholar]
  62. Williams S. A., Kwon H., Chen L. F., Greene W. C.. ( 2007;). Sustained induction of NF-κB is required for efficient expression of latent human immunodeficiency virus type 1. . J Virol 81:, 6043–6056. [CrossRef][PubMed]
    [Google Scholar]
  63. Wong J. K., Hezareh M., Günthard H. F., Havlir D. V., Ignacio C. C., Spina C. A., Richman D. D.. ( 1997;). Recovery of replication-competent HIV despite prolonged suppression of plasma viremia. . Science 278:, 1291–1295. [CrossRef][PubMed]
    [Google Scholar]
  64. Zhong J., Gastaminza P., Chung J., Stamataki Z., Isogawa M., Cheng G., McKeating J. A., Chisari F. V.. ( 2006;). Persistent hepatitis C virus infection in vitro: coevolution of virus and host. . J Virol 80:, 11082–11093. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.046573-0
Loading
/content/journal/jgv/10.1099/vir.0.046573-0
Loading

Data & Media loading...

Supplements

Supplementary Figures 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error