1887

Abstract

Growth arrest and DNA-damage-inducible gene 45-α (GADD45α) protein has been shown to be a tumour suppressor and is implicated in cell-cycle arrest and suppression of cell growth. The hepatitis C virus (HCV) non-structural 5A (NS5A) protein plays an important role in cell survival and is linked to the development of hepatocellular carcinoma (HCC). However, the role of HCV NS5A in the development of HCC remains to be clarified. This study sought to determine whether GADD45α mediates HCV NS5A-induced cellular survival and to elucidate the molecular mechanism of GADD45α expression regulated by HCV NS5A. It was found that HCV NS5A downregulated GADD45α expression at the transcriptional level by decreasing promoter activity, mRNA transcription and protein levels. Knockdown of p53 resulted in a similar decrease in GADD45α expression to that caused by HCV NS5A, whilst overexpression of p53 reversed the HCV NS5A-mediated downregulation of GADD45α. HCV NS5A repressed p53 expression, which was followed by a subsequent decrease in GADD45α expression. Further evidence was provided showing that HCV NS5A led to increases of phosphorylated nuclear factor-κB and Akt levels. Inhibition of these pathways using pharmacological inhibitors or specific small interfering RNAs rescued HCV NS5A-mediated downregulation of p53 and GADD45α. It was also found that HCV NS5A protein and depletion of GADD45α increased cell growth, whereas ectopic expression of GADD45α eliminated HCV NS5A-induced cell proliferation. These results indicated that HCV NS5A downregulates GADD45α expression and subsequently triggers cellular proliferation. These findings provide new insights suggesting that HCV NS5A could contribute to the occurrence of HCV-related HCC.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.046052-0
2013-02-01
2020-01-21
Loading full text...

Full text loading...

/deliver/fulltext/jgv/94/2/326.html?itemId=/content/journal/jgv/10.1099/vir.0.046052-0&mimeType=html&fmt=ahah

References

  1. Boehme K. A., Kulikov R., Blattner C.. ( 2008;). p53 stabilization in response to DNA damage requires Akt/PKB and DNA-PK. . Proc Natl Acad Sci U S A 105:, 7785–7790. [CrossRef][PubMed]
    [Google Scholar]
  2. Burdette D., Olivarez M., Waris G.. ( 2010;). Activation of transcription factor Nrf2 by hepatitis C virus induces the cell-survival pathway. . J Gen Virol 91:, 681–690. [CrossRef][PubMed]
    [Google Scholar]
  3. Cantley L. C.. ( 2002;). The phosphoinositide 3-kinase pathway. . Science 296:, 1655–1657. [CrossRef][PubMed]
    [Google Scholar]
  4. Chen S. L., Morgan T. R.. ( 2006;). The natural history of hepatitis C virus (HCV) infection. . Int J Med Sci 3:, 47–52. [CrossRef][PubMed]
    [Google Scholar]
  5. Chen F., Zhang Z., Leonard S. S., Shi X.. ( 2001;). Contrasting roles of NF-κB and JNK in arsenite-induced p53-independent expression of GADD45α. . Oncogene 20:, 3585–3589. [CrossRef][PubMed]
    [Google Scholar]
  6. Choo Q. L., Kuo G., Weiner A. J., Overby L. R., Bradley D. W., Houghton M.. ( 1989;). Isolation of a cDNA clone derived from a blood-borne non-A, non-B viral hepatitis genome. . Science 244:, 359–362. [CrossRef][PubMed]
    [Google Scholar]
  7. Deng L., Adachi T., Kitayama K., Bungyoku Y., Kitazawa S., Ishido S., Shoji I., Hotta H.. ( 2008;). Hepatitis C virus infection induces apoptosis through a Bax-triggered, mitochondrion-mediated, caspase 3-dependent pathway. . J Virol 82:, 10375–10385. [CrossRef][PubMed]
    [Google Scholar]
  8. Fornace A. J. Jr, Alamo I. Jr, Hollander M. C.. ( 1988;). DNA damage-inducible transcripts in mammalian cells. . Proc Natl Acad Sci U S A 85:, 8800–8804. [CrossRef][PubMed]
    [Google Scholar]
  9. Fornace A. J. Jr, Nebert D. W., Hollander M. C., Luethy J. D., Papathanasiou M., Fargnoli J., Holbrook N. J.. ( 1989;). Mammalian genes coordinately regulated by growth arrest signals and DNA-damaging agents. . Mol Cell Biol 9:, 4196–4203.[PubMed]
    [Google Scholar]
  10. Gale M. Jr, Kwieciszewski B., Dossett M., Nakao H., Katze M. G.. ( 1999;). Antiapoptotic and oncogenic potentials of hepatitis C virus are linked to interferon resistance by viral repression of the PKR protein kinase. . J Virol 73:, 6506–6516.[PubMed]
    [Google Scholar]
  11. Ghosh A. K., Steele R., Meyer K., Ray R., Ray R. B.. ( 1999;). Hepatitis C virus NS5A protein modulates cell cycle regulatory genes and promotes cell growth. . J Gen Virol 80:, 1179–1183.[PubMed]
    [Google Scholar]
  12. Gong G., Waris G., Tanveer R., Siddiqui A.. ( 2001;). Human hepatitis C virus NS5A protein alters intracellular calcium levels, induces oxidative stress, and activates STAT-3 and NF-κB. . Proc Natl Acad Sci U S A 98:, 9599–9604. [CrossRef][PubMed]
    [Google Scholar]
  13. Gong G.-Z., Jiang Y.-F., He Y., Lai L.-Y., Zhu Y.-H., Su X.-S.. ( 2004;). HCV NS5A abrogates p53 protein function by interfering with p53-DNA binding. . World J Gastroenterol 10:, 2223–2227.[PubMed]
    [Google Scholar]
  14. Gramantieri L., Chieco P., Giovannini C., Lacchini M., Treré D., Grazi G. L., Venturi A., Bolondi L.. ( 2005;). GADD45-α expression in cirrhosis and hepatocellular carcinoma: relationship with DNA repair and proliferation. . Hum Pathol 36:, 1154–1162. [CrossRef][PubMed]
    [Google Scholar]
  15. Gupta M., Gupta S. K., Hoffman B., Liebermann D. A.. ( 2006;). Gadd45a and Gadd45b protect hematopoietic cells from UV-induced apoptosis via distinct signaling pathways, including p38 activation and JNK inhibition. . J Biol Chem 281:, 17552–17558. [CrossRef][PubMed]
    [Google Scholar]
  16. Hollander M. C., Alamo I., Jackman J., Wang M. G., McBride O. W., Fornace A. J. Jr. ( 1993;). Analysis of the mammalian gadd45 gene and its response to DNA damage. . J Biol Chem 268:, 24385–24393.[PubMed]
    [Google Scholar]
  17. Hughes K. J., Meares G. P., Chambers K. T., Corbett J. A.. ( 2009;). Repair of nitric oxide-damaged DNA in β-cells requires JNK-dependent GADD45α expression. . J Biol Chem 284:, 27402–27408. [CrossRef][PubMed]
    [Google Scholar]
  18. Jin S., Mazzacurati L., Zhu X., Tong T., Song Y., Shujuan S., Petrik K. L., Rajasekaran B., Wu M., Zhan Q.. ( 2003;). Gadd45a contributes to p53 stabilization in response to DNA damage. . Oncogene 22:, 8536–8540. [CrossRef][PubMed]
    [Google Scholar]
  19. Karin M., Ben-Neriah Y.. ( 2000;). Phosphorylation meets ubiquitination: the control of NF-κB activity. . Annu Rev Immunol 18:, 621–663. [CrossRef][PubMed]
    [Google Scholar]
  20. Lan K.-H., Sheu M.-L., Hwang S.-J., Yen S.-H., Chen S.-Y., Wu J.-C., Wang Y.-J., Kato N., Omata M.. & other authors ( 2002;). HCV NS5A interacts with p53 and inhibits p53-mediated apoptosis. . Oncogene 21:, 4801–4811. [CrossRef][PubMed]
    [Google Scholar]
  21. Lindenbach B. D., Rice C. M.. ( 2005;). Unravelling hepatitis C virus replication from genome to function. . Nature 436:, 933–938. [CrossRef][PubMed]
    [Google Scholar]
  22. Liu S. F., Malik A. B.. ( 2006;). NF-κB activation as a pathological mechanism of septic shock and inflammation. . Am J Physiol Lung Cell Mol Physiol 290:, L622–L645. [CrossRef][PubMed]
    [Google Scholar]
  23. Macdonald A., Harris M.. ( 2004;). Hepatitis C virus NS5A: tales of a promiscuous protein. . J Gen Virol 85:, 2485–2502. [CrossRef][PubMed]
    [Google Scholar]
  24. Majumder M., Ghosh A. K., Steele R., Ray R., Ray R. B.. ( 2001;). Hepatitis C virus NS5A physically associates with p53 and regulates p21/waf1 gene expression in a p53-dependent manner. . J Virol 75:, 1401–1407. [CrossRef][PubMed]
    [Google Scholar]
  25. Mannová P., Beretta L.. ( 2005;). Activation of the N-Ras–PI3K–Akt-mTOR pathway by hepatitis C virus: control of cell survival and viral replication. . J Virol 79:, 8742–8749. [CrossRef][PubMed]
    [Google Scholar]
  26. Mullan P. B., Quinn J. E., Gilmore P. M., McWilliams S., Andrews H., Gervin C., McCabe N., McKenna S., White P.. & other authors ( 2001;). BRCA1 and GADD45 mediated G2/M cell cycle arrest in response to antimicrotubule agents. . Oncogene 20:, 6123–6131. [CrossRef][PubMed]
    [Google Scholar]
  27. Peng L., Liang D., Tong W., Li J., Yuan Z.. ( 2010;). Hepatitis C virus NS5A activates the mammalian target of rapamycin (mTOR) pathway, contributing to cell survival by disrupting the interaction between FK506-binding protein 38 (FKBP38) and mTOR. . J Biol Chem 285:, 20870–20881. [CrossRef][PubMed]
    [Google Scholar]
  28. Royds J. A., Dower S. K., Qwarnstrom E. E., Lewis C. E.. ( 1998;). Response of tumour cells to hypoxia: role of p53 and NFkB. . Mol Pathol 51:, 55–61. [CrossRef][PubMed]
    [Google Scholar]
  29. Saeed M., Shiina M., Date T., Akazawa D., Watanabe N., Murayama A., Suzuki T., Watanabe H., Hiraga N.. & other authors ( 2011;). In vivo adaptation of hepatitis C virus in chimpanzees for efficient virus production and evasion of apoptosis. . Hepatology 54:, 425–433. [CrossRef][PubMed]
    [Google Scholar]
  30. Schumm K., Rocha S., Caamano J., Perkins N. D.. ( 2006;). Regulation of p53 tumour suppressor target gene expression by the p52 NF-κB subunit. . EMBO J 25:, 4820–4832. [CrossRef][PubMed]
    [Google Scholar]
  31. Shirota Y., Luo H., Qin W., Kaneko S., Yamashita T., Kobayashi K., Murakami S.. ( 2002;). Hepatitis C virus (HCV) NS5A binds RNA-dependent RNA polymerase (RdRP) NS5B and modulates RNA-dependent RNA polymerase activity. . J Biol Chem 277:, 11149–11155. [CrossRef][PubMed]
    [Google Scholar]
  32. Siafakas A. R., Richardson D. R.. ( 2009;). Growth arrest and DNA damage-45 alpha (GADD45α). . Int J Biochem Cell Biol 41:, 986–989. [CrossRef][PubMed]
    [Google Scholar]
  33. Siebenlist U., Franzoso G., Brown K.. ( 1994;). Structure, regulation and function of NF-κB. . Annu Rev Cell Biol 10:, 405–455. [CrossRef][PubMed]
    [Google Scholar]
  34. Street A., Macdonald A., Crowder K., Harris M.. ( 2004;). The hepatitis C virus NS5A protein activates a phosphoinositide 3-kinase-dependent survival signaling cascade. . J Biol Chem 279:, 12232–12241. [CrossRef][PubMed]
    [Google Scholar]
  35. Street A., Macdonald A., McCormick C., Harris M.. ( 2005;). Hepatitis C virus NS5A-mediated activation of phosphoinositide 3-kinase results in stabilization of cellular β-catenin and stimulation of β-catenin-responsive transcription. . J Virol 79:, 5006–5016. [CrossRef][PubMed]
    [Google Scholar]
  36. Tront J. S., Huang Y., Fornace A. J. Jr, Hoffman B., Liebermann D. A.. ( 2010;). Gadd45a functions as a promoter or suppressor of breast cancer dependent on the oncogenic stress. . Cancer Res 70:, 9671–9681. [CrossRef][PubMed]
    [Google Scholar]
  37. Wakita T., Pietschmann T., Kato T., Date T., Miyamoto M., Zhao Z., Murthy K., Habermann A., Kräusslich H. G.. & other authors ( 2005;). Production of infectious hepatitis C virus in tissue culture from a cloned viral genome. . Nat Med 11:, 791–796. [CrossRef][PubMed]
    [Google Scholar]
  38. Wu H., Lozano G.. ( 1994;). NF-κB activation of p53. A potential mechanism for suppressing cell growth in response to stress. . J Biol Chem 269:, 20067–20074.[PubMed]
    [Google Scholar]
  39. Yamaguchi A., Tamatani M., Matsuzaki H., Namikawa K., Kiyama H., Vitek M. P., Mitsuda N., Tohyama M.. ( 2001;). Akt activation protects hippocampal neurons from apoptosis by inhibiting transcriptional activity of p53. . J Biol Chem 276:, 5256–5264. [CrossRef][PubMed]
    [Google Scholar]
  40. Zekri A. R., Bahnassy A. A., Hafez M. M., Hassan Z. K., Kamel M., Loutfy S. A., Sherif G. M., El-Zayadi A. R., Daoud S. S.. ( 2011;). Characterization of chronic HCV infection-induced apoptosis. . Comp Hepatol 10:, 4. [CrossRef][PubMed]
    [Google Scholar]
  41. Zerbini L. F., Wang Y., Czibere A., Correa R. G., Cho J. Y., Ijiri K., Wei W., Joseph M., Gu X.. & other authors ( 2004;). NF-κB-mediated repression of growth arrest- and DNA-damage-inducible proteins 45α and γ is essential for cancer cell survival. . Proc Natl Acad Sci U S A 101:, 13618–13623. [CrossRef][PubMed]
    [Google Scholar]
  42. Zhan Q., Lord K. A., Alamo I. Jr, Hollander M. C., Carrier F., Ron D., Kohn K. W., Hoffman B., Liebermann D. A., Fornace A. J. Jr. ( 1994;). The gadd and MyD genes define a novel set of mammalian genes encoding acidic proteins that synergistically suppress cell growth. . Mol Cell Biol 14:, 2361–2371. [CrossRef][PubMed]
    [Google Scholar]
  43. Zhan Q., Chen I.-T., Antinore M. J., Fornace A. J. Jr. ( 1998;). Tumor suppressor p53 can participate in transcriptional induction of the GADD45 promoter in the absence of direct DNA binding. . Mol Cell Biol 18:, 2768–2778.[PubMed]
    [Google Scholar]
  44. Zhu Q.-S., Ren W., Korchin B., Lahat G., Dicker A., Lu Y., Mills G., Pollock R. E., Lev D.. ( 2008;). Soft tissue sarcoma cells are highly sensitive to AKT blockade: a role for p53-independent up-regulation of GADD45α. . Cancer Res 68:, 2895–2903. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.046052-0
Loading
/content/journal/jgv/10.1099/vir.0.046052-0
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error