1887

Abstract

Drosophila X virus (DXV), the prototype , is a well-studied RNA virus model. Its origin is unknown, and so is that of the only other entomobirnavirus, Espirito Santo virus (ESV). We isolated an entomobirnavirus tentatively named Culex Y virus (CYV) from hibernating complex mosquitoes in Germany. CYV was detected in three pools consisting of 11 mosquitoes each. Full-genome sequencing and phylogenetic analyses suggested that CYV and ESV define one sister species to DXV within the genus . In contrast to the laboratory-derived ESV, the ORF5 initiation codon AUG was mutated to GUG in all three wild-type CYV isolates. Also in contrast to ESV, replication of CYV was not dependent on other viruses in insect cell culture. CYV could provide a wild-type counterpart in research fields relying on DXV and other cell culture-adapted strains.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.045435-0
2012-11-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/jgv/93/11/2431.html?itemId=/content/journal/jgv/10.1099/vir.0.045435-0&mimeType=html&fmt=ahah

References

  1. Bock H., Brennicke A., Schuster W.. ( 1994;). Rps3 and rpl16 genes do not overlap in oenothera mitochondria: GTG as a potential translation initiation codon in plant mitochondria?. Plant Mol Biol 24:, 811–818. [CrossRef][PubMed]
    [Google Scholar]
  2. Böttcher B., Kiselev N. A., Stel’Mashchuk V. Y., Perevozchikova N. A., Borisov A. V., Crowther R. A.. ( 1997;). Three-dimensional structure of infectious bursal disease virus determined by electron cryomicroscopy. . J Virol 71:, 325–330.[PubMed]
    [Google Scholar]
  3. Brennan C. A., Anderson K. V.. ( 2004;). Drosophila: the genetics of innate immune recognition and response. . Annu Rev Immunol 22:, 457–483. [CrossRef][PubMed]
    [Google Scholar]
  4. Cai D., Qiu Y., Qi N., Yan R., Lin M., Nie D., Zhang J., Hu Y.. ( 2010;). Characterization of Wuhan nodavirus subgenomic RNA3 and the RNAi inhibition property of its encoded protein B2. . Virus Res 151:, 153–161. [CrossRef][PubMed]
    [Google Scholar]
  5. Chang C. P., Chen S. J., Lin C. H., Wang T. L., Wang C. C.. ( 2010;). A single sequence context cannot satisfy all non-AUG initiator codons in yeast. . BMC Microbiol 10:, 188. [CrossRef][PubMed]
    [Google Scholar]
  6. Chung H. K., Kordyban S., Cameron L., Dobos P.. ( 1996;). Sequence analysis of the bicistronic Drosophila X virus genome segment A and its encoded polypeptides. . Virology 225:, 359–368. [CrossRef][PubMed]
    [Google Scholar]
  7. Da Costa B., Soignier S., Chevalier C., Henry C., Thory C., Huet J. C., Delmas B.. ( 2003;). Blotched snakehead virus is a new aquatic birnavirus that is slightly more related to avibirnavirus than to aquabirnavirus. . J Virol 77:, 719–725. [CrossRef][PubMed]
    [Google Scholar]
  8. Delmas B., Mundt E., Vakharia V. N., Wu J. L.. ( 2011;). Birnaviridae. . In Virus Taxonomy: Classification and Nomenclature of Viruses, , 9th edn., pp. 499–507. Edited by King A. M. Q., Adams M. J., Carstens E. B., Lefkowitz E. J... San Diego:: Elsevier Academic Press;.
    [Google Scholar]
  9. Dobos P., Hill B. J., Hallett R., Kells D. T., Becht H., Teninges D.. ( 1979;). Biophysical and biochemical characterization of five animal viruses with bisegmented double-stranded RNA genomes. . J Virol 32:, 593–605.[PubMed]
    [Google Scholar]
  10. Firth A. E., Brierley I.. ( 2012;). Non-canonical translation in RNA viruses. . J Gen Virol 93:, 1385–1409. [CrossRef][PubMed]
    [Google Scholar]
  11. Franz A. W., Sanchez-Vargas I., Adelman Z. N., Blair C. D., Beaty B. J., James A. A., Olson K. E.. ( 2006;). Engineering RNA interference-based resistance to dengue virus type 2 in genetically modified Aedes aegypti. . Proc Natl Acad Sci U S A 103:, 4198–4203. [CrossRef][PubMed]
    [Google Scholar]
  12. Gold L.. ( 1988;). Posttranscriptional regulatory mechanisms in Escherichia coli. . Annu Rev Biochem 57:, 199–233. [CrossRef][PubMed]
    [Google Scholar]
  13. Haasnoot P. C., Cupac D., Berkhout B.. ( 2003;). Inhibition of virus replication by RNA interference. . J Biomed Sci 10:, 607–616. [CrossRef][PubMed]
    [Google Scholar]
  14. Jacks T., Power M. D., Masiarz F. R., Luciw P. A., Barr P. J., Varmus H. E.. ( 1988;). Characterization of ribosomal frameshifting in HIV-1 gag-pol expression. . Nature 331:, 280–283. [CrossRef][PubMed]
    [Google Scholar]
  15. Junglen S., Kopp A., Kurth A., Pauli G., Ellerbrok H., Leendertz F. H.. ( 2009;). A new flavivirus and a new vector: characterization of a novel flavivirus isolated from uranotaenia mosquitoes from a tropical rain forest. . J Virol 83:, 4462–4468. [CrossRef][PubMed]
    [Google Scholar]
  16. Khoo C. C., Piper J., Sanchez-Vargas I., Olson K. E., Franz A. W.. ( 2010;). The RNA interference pathway affects midgut infection- and escape barriers for Sindbis virus in Aedes aegypti. . BMC Microbiol 10:, 130. [CrossRef][PubMed]
    [Google Scholar]
  17. Kinney R. M., Butrapet S., Chang G. J., Tsuchiya K. R., Roehrig J. T., Bhamarapravati N., Gubler D. J.. ( 1997;). Construction of infectious cDNA clones for dengue 2 virus: strain 16681 and its attenuated vaccine derivative, strain PDK-53. . Virology 230:, 300–308. [CrossRef][PubMed]
    [Google Scholar]
  18. Kozak M.. ( 1989;). Context effects and inefficient initiation at non-AUG codons in eucaryotic cell-free translation systems. . Mol Cell Biol 9:, 5073–5080.[PubMed]
    [Google Scholar]
  19. Kumar P., Lee S. K., Shankar P., Manjunath N.. ( 2006;). A single siRNA suppresses fatal encephalitis induced by two different flaviviruses. . PLoS Med 3:, e96. [CrossRef][PubMed]
    [Google Scholar]
  20. Li W. X., Li H., Lu R., Li F., Dus M., Atkinson P., Brydon E. W., Johnson K. L., García-Sastre A.. & other authors ( 2004;). Interferon antagonist proteins of influenza and vaccinia viruses are suppressors of RNA silencing. . Proc Natl Acad Sci U S A 101:, 1350–1355. [CrossRef][PubMed]
    [Google Scholar]
  21. Liu C., Zhang J., Wang J., Lu J., Chen W., Cai D., Hu Y.. ( 2006a;). Sequence analysis of coat protein gene of Wuhan nodavirus isolated from insect. . Virus Res 121:, 17–22. [CrossRef][PubMed]
    [Google Scholar]
  22. Liu C., Zhang J., Yi F., Wang J., Wang X., Jiang H., Xu J., Hu Y.. ( 2006b;). Isolation and RNA1 nucleotide sequence determination of a new insect nodavirus from Pieris rapae larvae in Wuhan city, China. . Virus Res 120:, 28–35. [CrossRef][PubMed]
    [Google Scholar]
  23. Magyar G., Dobos P.. ( 1994;). Evidence for the detection of the infectious pancreatic necrosis virus polyprotein and the 17-kDa polypeptide in infected cells and of the NS protease in purified virus. . Virology 204:, 580–589. [CrossRef][PubMed]
    [Google Scholar]
  24. Mukherjee S., Hanley K. A.. ( 2010;). RNA interference modulates replication of dengue virus in Drosophila melanogaster cells. . BMC Microbiol 10:, 127. [CrossRef][PubMed]
    [Google Scholar]
  25. Mundt E., Beyer J., Müller H.. ( 1995;). Identification of a novel viral protein in infectious bursal disease virus-infected cells. . J Gen Virol 76:, 437–443. [CrossRef][PubMed]
    [Google Scholar]
  26. Myles K. M., Wiley M. R., Morazzani E. M., Adelman Z. N.. ( 2008;). Alphavirus-derived small RNAs modulate pathogenesis in disease vector mosquitoes. . Proc Natl Acad Sci U S A 105:, 19938–19943. [CrossRef][PubMed]
    [Google Scholar]
  27. Nagy E., Dobos P.. ( 1984a;). Coding assignments of Drosophila X virus genome segments: in vitro translation of native and denatured virion dsRNA. . Virology 137:, 58–66. [CrossRef][PubMed]
    [Google Scholar]
  28. Nagy E., Dobos P.. ( 1984b;). Synthesis of Drosophila X virus proteins in cultured Drosophila cells. . Virology 134:, 358–367. [CrossRef][PubMed]
    [Google Scholar]
  29. Nayak A., Berry B., Tassetto M., Kunitomi M., Acevedo A., Deng C., Krutchinsky A., Gross J., Antoniewski C., Andino R.. ( 2010;). Cricket paralysis virus antagonizes Argonaute 2 to modulate antiviral defense in Drosophila. . Nat Struct Mol Biol 17:, 547–554. [CrossRef][PubMed]
    [Google Scholar]
  30. Pacca C. C., Severino A. A., Mondini A., Rahal P., D’avila S. G., Cordeiro J. A., Nogueira M. C., Bronzoni R. V., Nogueira M. L.. ( 2009;). RNA interference inhibits yellow fever virus replication in vitro and in vivo. . Virus Genes 38:, 224–231. [CrossRef][PubMed]
    [Google Scholar]
  31. Plus N.. ( 1979;). Viruses of Drosophila other than sigma. . In The Genetics and Biology of Drosophila, pp. 625–702. Edited by Ashburner M., Novitski E... London, New York, San Francisco:: Academic Press;.
    [Google Scholar]
  32. Pous J., Chevalier C., Ouldali M., Navaza J., Delmas B., Lepault J.. ( 2005;). Structure of birnavirus-like particles determined by combined electron cryomicroscopy and X-ray crystallography. . J Gen Virol 86:, 2339–2346. [CrossRef][PubMed]
    [Google Scholar]
  33. Qi N., Cai D., Qiu Y., Xie J., Wang Z., Si J., Zhang J., Zhou X., Hu Y.. ( 2011;). RNA binding by a novel helical fold of b2 protein from Wuhan nodavirus mediates the suppression of RNA interference and promotes b2 dimerization. . J Virol 85:, 9543–9554. [CrossRef][PubMed]
    [Google Scholar]
  34. Qi N., Zhang L., Qiu Y., Wang Z., Si J., Liu Y., Xiang X., Xie J., Qin C. F.. & other authors ( 2012;). Targeting of dicer-2 and RNA by a viral RNA silencing suppressor in Drosophila cells. . J Virol 86:, 5763–5773. [CrossRef][PubMed]
    [Google Scholar]
  35. Qiu Y., Cai D., Qi N., Wang Z., Zhou X., Zhang J., Hu Y.. ( 2011;). Internal initiation is responsible for synthesis of Wuhan nodavirus subgenomic RNA. . J Virol 85:, 4440–4451. [CrossRef][PubMed]
    [Google Scholar]
  36. Reed L. J., Muench H.. ( 1938;). A simple method of estimating fifty percent endpoints. . Am J Hyg 27:, 493–497.
    [Google Scholar]
  37. Sánchez-Vargas I., Scott J. C., Poole-Smith B. K., Franz A. W., Barbosa-Solomieu V., Wilusz J., Olson K. E., Blair C. D.. ( 2009;). Dengue virus type 2 infections of Aedes aegypti are modulated by the mosquito’s RNA interference pathway. . PLoS Pathog 5:, e1000299. [CrossRef][PubMed]
    [Google Scholar]
  38. Scott J. C., Brackney D. E., Campbell C. L., Bondu-Hawkins V., Hjelle B., Ebel G. D., Olson K. E., Blair C. D.. ( 2010;). Comparison of dengue virus type 2-specific small RNAs from RNA interference-competent and -incompetent mosquito cells. . PLoS Negl Trop Dis 4:, e848. [CrossRef][PubMed]
    [Google Scholar]
  39. Shwed P. S., Dobos P., Cameron L. A., Vakharia V. N., Duncan R.. ( 2002;). Birnavirus VP1 proteins form a distinct subgroup of RNA-dependent RNA polymerases lacking a GDD motif. . Virology 296:, 241–250. [CrossRef][PubMed]
    [Google Scholar]
  40. Singh G., Popli S., Hari Y., Malhotra P., Mukherjee S., Bhatnagar R. K.. ( 2009;). Suppression of RNA silencing by flock house virus B2 protein is mediated through its interaction with the PAZ domain of Dicer. . FASEB J 23:, 1845–1857. [CrossRef][PubMed]
    [Google Scholar]
  41. Sugihara H., Andrisani V., Salvaterra P. M.. ( 1990;). Drosophila choline acetyltransferase uses a non-AUG initiation codon and full length RNA is inefficiently translated. . J Biol Chem 265:, 21714–21719.[PubMed]
    [Google Scholar]
  42. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  43. Teninges D.. ( 1979;). Protein and RNA composition of the structural components of Drosophila X virus. . J Gen Virol 45:, 641–649. [CrossRef]
    [Google Scholar]
  44. Teninges D., Ohanessian A., Richard-Molard C., Contamine D.. ( 1979;). Isolation and biological properties of Drosophila X virus. . J Gen Virol 42:, 241–254. [CrossRef]
    [Google Scholar]
  45. van Cleef K. W., van Mierlo J. T., van den Beek M., van Rij R. P.. ( 2011;). Identification of viral suppressors of RNAi by a reporter assay in Drosophila S2 cell culture. . Methods Mol Biol 721:, 201–213. [CrossRef][PubMed]
    [Google Scholar]
  46. van Rij R. P., Berezikov E.. ( 2009;). Small RNAs and the control of transposons and viruses in Drosophila. . Trends Microbiol 17:, 163–171. [CrossRef][PubMed]
    [Google Scholar]
  47. Vancini R., Paredes A., Ribeiro M., Blackburn K., Ferreira D., Kononchik J. P. Jr, Hernandez R., Brown D.. ( 2012;). Espirito Santo virus: a new birnavirus that replicates in insect cells. . J Virol 86:, 2390–2399. [CrossRef][PubMed]
    [Google Scholar]
  48. von Einem U. I., Gorbalenya A. E., Schirrmeier H., Behrens S. E., Letzel T., Mundt E.. ( 2004;). VP1 of infectious bursal disease virus is an RNA-dependent RNA polymerase. . J Gen Virol 85:, 2221–2229. [CrossRef][PubMed]
    [Google Scholar]
  49. Wilson W., Braddock M., Adams S. E., Rathjen P. D., Kingsman S. M., Kingsman A. J.. ( 1988;). HIV expression strategies: ribosomal frameshifting is directed by a short sequence in both mammalian and yeast systems. . Cell 55:, 1159–1169. [CrossRef][PubMed]
    [Google Scholar]
  50. Zambon R. A., Nandakumar M., Vakharia V. N., Wu L. P.. ( 2005;). The Toll pathway is important for an antiviral response in Drosophila. . Proc Natl Acad Sci U S A 102:, 7257–7262. [CrossRef][PubMed]
    [Google Scholar]
  51. Zambon R. A., Vakharia V. N., Wu L. P.. ( 2006;). RNAi is an antiviral immune response against a dsRNA virus in Drosophila melanogaster. . Cell Microbiol 8:, 880–889. [CrossRef][PubMed]
    [Google Scholar]
  52. Zirkel F., Kurth A., Quan P. L., Briese T., Ellerbrok H., Pauli G., Leendertz F. H., Lipkin W. I., Ziebuhr J.. & other authors ( 2011;). An insect nidovirus emerging from a primary tropical rainforest. . MBio 2:, e00077-11. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.045435-0
Loading
/content/journal/jgv/10.1099/vir.0.045435-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error