1887

Abstract

Drosophila X virus (DXV), the prototype , is a well-studied RNA virus model. Its origin is unknown, and so is that of the only other entomobirnavirus, Espirito Santo virus (ESV). We isolated an entomobirnavirus tentatively named Culex Y virus (CYV) from hibernating complex mosquitoes in Germany. CYV was detected in three pools consisting of 11 mosquitoes each. Full-genome sequencing and phylogenetic analyses suggested that CYV and ESV define one sister species to DXV within the genus . In contrast to the laboratory-derived ESV, the ORF5 initiation codon AUG was mutated to GUG in all three wild-type CYV isolates. Also in contrast to ESV, replication of CYV was not dependent on other viruses in insect cell culture. CYV could provide a wild-type counterpart in research fields relying on DXV and other cell culture-adapted strains.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.045435-0
2012-11-01
2020-07-08
Loading full text...

Full text loading...

/deliver/fulltext/jgv/93/11/2431.html?itemId=/content/journal/jgv/10.1099/vir.0.045435-0&mimeType=html&fmt=ahah

References

  1. Bock H., Brennicke A., Schuster W. 1994; Rps3 and rpl16 genes do not overlap in oenothera mitochondria: GTG as a potential translation initiation codon in plant mitochondria?. Plant Mol Biol 24:811–818 [CrossRef][PubMed]
    [Google Scholar]
  2. Böttcher B., Kiselev N. A., Stel’Mashchuk V. Y., Perevozchikova N. A., Borisov A. V., Crowther R. A. 1997; Three-dimensional structure of infectious bursal disease virus determined by electron cryomicroscopy. J Virol 71:325–330[PubMed]
    [Google Scholar]
  3. Brennan C. A., Anderson K. V. 2004; Drosophila: the genetics of innate immune recognition and response. Annu Rev Immunol 22:457–483 [CrossRef][PubMed]
    [Google Scholar]
  4. Cai D., Qiu Y., Qi N., Yan R., Lin M., Nie D., Zhang J., Hu Y. 2010; Characterization of Wuhan nodavirus subgenomic RNA3 and the RNAi inhibition property of its encoded protein B2. Virus Res 151:153–161 [CrossRef][PubMed]
    [Google Scholar]
  5. Chang C. P., Chen S. J., Lin C. H., Wang T. L., Wang C. C. 2010; A single sequence context cannot satisfy all non-AUG initiator codons in yeast. BMC Microbiol 10:188 [CrossRef][PubMed]
    [Google Scholar]
  6. Chung H. K., Kordyban S., Cameron L., Dobos P. 1996; Sequence analysis of the bicistronic Drosophila X virus genome segment A and its encoded polypeptides. Virology 225:359–368 [CrossRef][PubMed]
    [Google Scholar]
  7. Da Costa B., Soignier S., Chevalier C., Henry C., Thory C., Huet J. C., Delmas B. 2003; Blotched snakehead virus is a new aquatic birnavirus that is slightly more related to avibirnavirus than to aquabirnavirus. J Virol 77:719–725 [CrossRef][PubMed]
    [Google Scholar]
  8. Delmas B., Mundt E., Vakharia V. N., Wu J. L. 2011; Birnaviridae. In Virus Taxonomy: Classification and Nomenclature of Viruses, 9th edn. pp. 499–507 Edited by King A. M. Q., Adams M. J., Carstens E. B., Lefkowitz E. J. San Diego: Elsevier Academic Press;
    [Google Scholar]
  9. Dobos P., Hill B. J., Hallett R., Kells D. T., Becht H., Teninges D. 1979; Biophysical and biochemical characterization of five animal viruses with bisegmented double-stranded RNA genomes. J Virol 32:593–605[PubMed]
    [Google Scholar]
  10. Firth A. E., Brierley I. 2012; Non-canonical translation in RNA viruses. J Gen Virol 93:1385–1409 [CrossRef][PubMed]
    [Google Scholar]
  11. Franz A. W., Sanchez-Vargas I., Adelman Z. N., Blair C. D., Beaty B. J., James A. A., Olson K. E. 2006; Engineering RNA interference-based resistance to dengue virus type 2 in genetically modified Aedes aegypti. Proc Natl Acad Sci U S A 103:4198–4203 [CrossRef][PubMed]
    [Google Scholar]
  12. Gold L. 1988; Posttranscriptional regulatory mechanisms in Escherichia coli. Annu Rev Biochem 57:199–233 [CrossRef][PubMed]
    [Google Scholar]
  13. Haasnoot P. C., Cupac D., Berkhout B. 2003; Inhibition of virus replication by RNA interference. J Biomed Sci 10:607–616 [CrossRef][PubMed]
    [Google Scholar]
  14. Jacks T., Power M. D., Masiarz F. R., Luciw P. A., Barr P. J., Varmus H. E. 1988; Characterization of ribosomal frameshifting in HIV-1 gag-pol expression. Nature 331:280–283 [CrossRef][PubMed]
    [Google Scholar]
  15. Junglen S., Kopp A., Kurth A., Pauli G., Ellerbrok H., Leendertz F. H. 2009; A new flavivirus and a new vector: characterization of a novel flavivirus isolated from uranotaenia mosquitoes from a tropical rain forest. J Virol 83:4462–4468 [CrossRef][PubMed]
    [Google Scholar]
  16. Khoo C. C., Piper J., Sanchez-Vargas I., Olson K. E., Franz A. W. 2010; The RNA interference pathway affects midgut infection- and escape barriers for Sindbis virus in Aedes aegypti. BMC Microbiol 10:130 [CrossRef][PubMed]
    [Google Scholar]
  17. Kinney R. M., Butrapet S., Chang G. J., Tsuchiya K. R., Roehrig J. T., Bhamarapravati N., Gubler D. J. 1997; Construction of infectious cDNA clones for dengue 2 virus: strain 16681 and its attenuated vaccine derivative, strain PDK-53. Virology 230:300–308 [CrossRef][PubMed]
    [Google Scholar]
  18. Kozak M. 1989; Context effects and inefficient initiation at non-AUG codons in eucaryotic cell-free translation systems. Mol Cell Biol 9:5073–5080[PubMed]
    [Google Scholar]
  19. Kumar P., Lee S. K., Shankar P., Manjunath N. 2006; A single siRNA suppresses fatal encephalitis induced by two different flaviviruses. PLoS Med 3:e96 [CrossRef][PubMed]
    [Google Scholar]
  20. Li W. X., Li H., Lu R., Li F., Dus M., Atkinson P., Brydon E. W., Johnson K. L., García-Sastre A.other authors 2004; Interferon antagonist proteins of influenza and vaccinia viruses are suppressors of RNA silencing. Proc Natl Acad Sci U S A 101:1350–1355 [CrossRef][PubMed]
    [Google Scholar]
  21. Liu C., Zhang J., Wang J., Lu J., Chen W., Cai D., Hu Y. 2006a; Sequence analysis of coat protein gene of Wuhan nodavirus isolated from insect. Virus Res 121:17–22 [CrossRef][PubMed]
    [Google Scholar]
  22. Liu C., Zhang J., Yi F., Wang J., Wang X., Jiang H., Xu J., Hu Y. 2006b; Isolation and RNA1 nucleotide sequence determination of a new insect nodavirus from Pieris rapae larvae in Wuhan city, China. Virus Res 120:28–35 [CrossRef][PubMed]
    [Google Scholar]
  23. Magyar G., Dobos P. 1994; Evidence for the detection of the infectious pancreatic necrosis virus polyprotein and the 17-kDa polypeptide in infected cells and of the NS protease in purified virus. Virology 204:580–589 [CrossRef][PubMed]
    [Google Scholar]
  24. Mukherjee S., Hanley K. A. 2010; RNA interference modulates replication of dengue virus in Drosophila melanogaster cells. BMC Microbiol 10:127 [CrossRef][PubMed]
    [Google Scholar]
  25. Mundt E., Beyer J., Müller H. 1995; Identification of a novel viral protein in infectious bursal disease virus-infected cells. J Gen Virol 76:437–443 [CrossRef][PubMed]
    [Google Scholar]
  26. Myles K. M., Wiley M. R., Morazzani E. M., Adelman Z. N. 2008; Alphavirus-derived small RNAs modulate pathogenesis in disease vector mosquitoes. Proc Natl Acad Sci U S A 105:19938–19943 [CrossRef][PubMed]
    [Google Scholar]
  27. Nagy E., Dobos P. 1984a; Coding assignments of Drosophila X virus genome segments: in vitro translation of native and denatured virion dsRNA. Virology 137:58–66 [CrossRef][PubMed]
    [Google Scholar]
  28. Nagy E., Dobos P. 1984b; Synthesis of Drosophila X virus proteins in cultured Drosophila cells. Virology 134:358–367 [CrossRef][PubMed]
    [Google Scholar]
  29. Nayak A., Berry B., Tassetto M., Kunitomi M., Acevedo A., Deng C., Krutchinsky A., Gross J., Antoniewski C., Andino R. 2010; Cricket paralysis virus antagonizes Argonaute 2 to modulate antiviral defense in Drosophila. Nat Struct Mol Biol 17:547–554 [CrossRef][PubMed]
    [Google Scholar]
  30. Pacca C. C., Severino A. A., Mondini A., Rahal P., D’avila S. G., Cordeiro J. A., Nogueira M. C., Bronzoni R. V., Nogueira M. L. 2009; RNA interference inhibits yellow fever virus replication in vitro and in vivo. Virus Genes 38:224–231 [CrossRef][PubMed]
    [Google Scholar]
  31. Plus N. 1979; Viruses of Drosophila other than sigma. In The Genetics and Biology of Drosophila, pp. 625–702 Edited by Ashburner M., Novitski E. London, New York, San Francisco: Academic Press;
    [Google Scholar]
  32. Pous J., Chevalier C., Ouldali M., Navaza J., Delmas B., Lepault J. 2005; Structure of birnavirus-like particles determined by combined electron cryomicroscopy and X-ray crystallography. J Gen Virol 86:2339–2346 [CrossRef][PubMed]
    [Google Scholar]
  33. Qi N., Cai D., Qiu Y., Xie J., Wang Z., Si J., Zhang J., Zhou X., Hu Y. 2011; RNA binding by a novel helical fold of b2 protein from Wuhan nodavirus mediates the suppression of RNA interference and promotes b2 dimerization. J Virol 85:9543–9554 [CrossRef][PubMed]
    [Google Scholar]
  34. Qi N., Zhang L., Qiu Y., Wang Z., Si J., Liu Y., Xiang X., Xie J., Qin C. F.other authors 2012; Targeting of dicer-2 and RNA by a viral RNA silencing suppressor in Drosophila cells. J Virol 86:5763–5773 [CrossRef][PubMed]
    [Google Scholar]
  35. Qiu Y., Cai D., Qi N., Wang Z., Zhou X., Zhang J., Hu Y. 2011; Internal initiation is responsible for synthesis of Wuhan nodavirus subgenomic RNA. J Virol 85:4440–4451 [CrossRef][PubMed]
    [Google Scholar]
  36. Reed L. J., Muench H. 1938; A simple method of estimating fifty percent endpoints. Am J Hyg 27:493–497
    [Google Scholar]
  37. Sánchez-Vargas I., Scott J. C., Poole-Smith B. K., Franz A. W., Barbosa-Solomieu V., Wilusz J., Olson K. E., Blair C. D. 2009; Dengue virus type 2 infections of Aedes aegypti are modulated by the mosquito’s RNA interference pathway. PLoS Pathog 5:e1000299 [CrossRef][PubMed]
    [Google Scholar]
  38. Scott J. C., Brackney D. E., Campbell C. L., Bondu-Hawkins V., Hjelle B., Ebel G. D., Olson K. E., Blair C. D. 2010; Comparison of dengue virus type 2-specific small RNAs from RNA interference-competent and -incompetent mosquito cells. PLoS Negl Trop Dis 4:e848 [CrossRef][PubMed]
    [Google Scholar]
  39. Shwed P. S., Dobos P., Cameron L. A., Vakharia V. N., Duncan R. 2002; Birnavirus VP1 proteins form a distinct subgroup of RNA-dependent RNA polymerases lacking a GDD motif. Virology 296:241–250 [CrossRef][PubMed]
    [Google Scholar]
  40. Singh G., Popli S., Hari Y., Malhotra P., Mukherjee S., Bhatnagar R. K. 2009; Suppression of RNA silencing by flock house virus B2 protein is mediated through its interaction with the PAZ domain of Dicer. FASEB J 23:1845–1857 [CrossRef][PubMed]
    [Google Scholar]
  41. Sugihara H., Andrisani V., Salvaterra P. M. 1990; Drosophila choline acetyltransferase uses a non-AUG initiation codon and full length RNA is inefficiently translated. J Biol Chem 265:21714–21719[PubMed]
    [Google Scholar]
  42. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. 2011; mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  43. Teninges D. 1979; Protein and RNA composition of the structural components of Drosophila X virus. J Gen Virol 45:641–649 [CrossRef]
    [Google Scholar]
  44. Teninges D., Ohanessian A., Richard-Molard C., Contamine D. 1979; Isolation and biological properties of Drosophila X virus. J Gen Virol 42:241–254 [CrossRef]
    [Google Scholar]
  45. van Cleef K. W., van Mierlo J. T., van den Beek M., van Rij R. P. 2011; Identification of viral suppressors of RNAi by a reporter assay in Drosophila S2 cell culture. Methods Mol Biol 721:201–213 [CrossRef][PubMed]
    [Google Scholar]
  46. van Rij R. P., Berezikov E. 2009; Small RNAs and the control of transposons and viruses in Drosophila. Trends Microbiol 17:163–171 [CrossRef][PubMed]
    [Google Scholar]
  47. Vancini R., Paredes A., Ribeiro M., Blackburn K., Ferreira D., Kononchik J. P. Jr, Hernandez R., Brown D. 2012; Espirito Santo virus: a new birnavirus that replicates in insect cells. J Virol 86:2390–2399 [CrossRef][PubMed]
    [Google Scholar]
  48. von Einem U. I., Gorbalenya A. E., Schirrmeier H., Behrens S. E., Letzel T., Mundt E. 2004; VP1 of infectious bursal disease virus is an RNA-dependent RNA polymerase. J Gen Virol 85:2221–2229 [CrossRef][PubMed]
    [Google Scholar]
  49. Wilson W., Braddock M., Adams S. E., Rathjen P. D., Kingsman S. M., Kingsman A. J. 1988; HIV expression strategies: ribosomal frameshifting is directed by a short sequence in both mammalian and yeast systems. Cell 55:1159–1169 [CrossRef][PubMed]
    [Google Scholar]
  50. Zambon R. A., Nandakumar M., Vakharia V. N., Wu L. P. 2005; The Toll pathway is important for an antiviral response in Drosophila. Proc Natl Acad Sci U S A 102:7257–7262 [CrossRef][PubMed]
    [Google Scholar]
  51. Zambon R. A., Vakharia V. N., Wu L. P. 2006; RNAi is an antiviral immune response against a dsRNA virus in Drosophila melanogaster. Cell Microbiol 8:880–889 [CrossRef][PubMed]
    [Google Scholar]
  52. Zirkel F., Kurth A., Quan P. L., Briese T., Ellerbrok H., Pauli G., Leendertz F. H., Lipkin W. I., Ziebuhr J.other authors 2011; An insect nidovirus emerging from a primary tropical rainforest. MBio 2:e00077-11 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.045435-0
Loading
/content/journal/jgv/10.1099/vir.0.045435-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error