1887

Abstract

Vaccinia virus (VACV) strain Western Reserve protein C4 has been characterized and its function and contribution to virus virulence assessed. Bioinformatic analysis showed that C4 is conserved in six orthopoxvirus species and shares 43 % amino acid identity with VACV protein C16, a known virulence factor. A recombinant VACV expressing a C-terminally tagged version of C4 showed that, like C16, this 37 kDa protein is expressed early during infection and localizes to both the cytoplasm and the nucleus. Functional assays using a firefly luciferase reporter plasmid under the control of a nuclear factor kappa B (NF-κB)-dependent promoter demonstrated that C4 inhibits NF-κB activation at, or downstream of, the inhibitor of kappa kinase (IKK) complex. Consistent with this, C4 inhibited interleukin-1β-induced translocation of p65 into the nucleus. A VACV lacking the gene (vΔC4) showed no significant differences from wild-type virus in growth kinetics or spread in cell culture, but had reduced virulence in a murine intranasal model of infection. vΔC4-infected mice exhibited fewer symptoms, lost less weight and recovered 7 days earlier than animals infected with control viruses expressing C4. Furthermore, bronchoalveolar lavage fluid from vΔC4-infected mice had increased cell numbers at day 5 post-infection, which correlated with reduced lung virus titres from this time onward. C4 represents the ninth VACV protein to inhibit NF-κB activation and remarkably, in every case examined, loss of each protein individually caused an alteration in virus virulence, despite the presence of other NF-κB inhibitors.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.045070-0
2012-10-01
2022-01-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/93/10/2098.html?itemId=/content/journal/jgv/10.1099/vir.0.045070-0&mimeType=html&fmt=ahah

References

  1. Alcami A. 2003; Viral mimicry of cytokines, chemokines and their receptors. Nat Rev Immunol 3:36–50 [View Article][PubMed]
    [Google Scholar]
  2. Alcamí A., Smith G. L. 1992; A soluble receptor for interleukin-1β encoded by vaccinia virus: a novel mechanism of virus modulation of the host response to infection. Cell 71:153–167 [View Article][PubMed]
    [Google Scholar]
  3. Alcamí A., Smith G. L. 1996; A mechanism for the inhibition of fever by a virus. Proc Natl Acad Sci U S A 93:11029–11034 [View Article][PubMed]
    [Google Scholar]
  4. Assarsson E., Greenbaum J. A., Sundström M., Schaffer L., Hammond J. A., Pasquetto V., Oseroff C., Hendrickson R. C., Lefkowitz E. J.other authors 2008; Kinetic analysis of a complete poxvirus transcriptome reveals an immediate-early class of genes. Proc Natl Acad Sci U S A 105:2140–2145 [View Article][PubMed]
    [Google Scholar]
  5. Bartlett N., Symons J. A., Tscharke D. C., Smith G. L. 2002; The vaccinia virus N1L protein is an intracellular homodimer that promotes virulence. J Gen Virol 83:1965–1976[PubMed]
    [Google Scholar]
  6. Benfield C. T., Mansur D. S., McCoy L. E., Ferguson B. J., Bahar M. W., Oldring A. P., Grimes J. M., Stuart D. I., Graham S. C., Smith G. L. 2011; Mapping the IκB kinase β (IKKβ)-binding interface of the B14 protein, a vaccinia virus inhibitor of IKKβ-mediated activation of nuclear factor κB. J Biol Chem 286:20727–20735 [View Article][PubMed]
    [Google Scholar]
  7. Bennink J. R., Yewdell J. W., Smith G. L., Moller C., Moss B. 1984; Recombinant vaccinia virus primes and stimulates influenza haemagglutinin-specific cytotoxic T cells. Nature 311:578–579 [View Article][PubMed]
    [Google Scholar]
  8. Bennink J. R., Yewdell J. W., Smith G. L., Moss B. 1986; Recognition of cloned influenza virus hemagglutinin gene products by cytotoxic T lymphocytes. J Virol 57:786–791[PubMed]
    [Google Scholar]
  9. Bowie A., Kiss-Toth E., Symons J. A., Smith G. L., Dower S. K., O’Neill L. A. 2000; A46R and A52R from vaccinia virus are antagonists of host IL-1 and toll-like receptor signaling. Proc Natl Acad Sci U S A 97:10162–10167 [View Article][PubMed]
    [Google Scholar]
  10. Chen R. A., Jacobs N., Smith G. L. 2006; Vaccinia virus strain Western Reserve protein B14 is an intracellular virulence factor. J Gen Virol 87:1451–1458 [View Article][PubMed]
    [Google Scholar]
  11. Chen R. A., Ryzhakov G., Cooray S., Randow F., Smith G. L. 2008; Inhibition of IκB kinase by vaccinia virus virulence factor B14. PLoS Pathog 4:e22 [View Article][PubMed]
    [Google Scholar]
  12. Clark R. H., Kenyon J. C., Bartlett N. W., Tscharke D. C., Smith G. L. 2006; Deletion of gene A41L enhances vaccinia virus immunogenicity and vaccine efficacy. J Gen Virol 87:29–38 [View Article][PubMed]
    [Google Scholar]
  13. Cooray S., Bahar M. W., Abrescia N. G., McVey C. E., Bartlett N. W., Chen R. A., Stuart D. I., Grimes J. M., Smith G. L. 2007; Functional and structural studies of the vaccinia virus virulence factor N1 reveal a Bcl-2-like anti-apoptotic protein. J Gen Virol 88:1656–1666 [View Article][PubMed]
    [Google Scholar]
  14. Cudmore S., Cossart P., Griffiths G., Way M. 1995; Actin-based motility of vaccinia virus. Nature 378:636–638 [View Article][PubMed]
    [Google Scholar]
  15. DiPerna G., Stack J., Bowie A. G., Boyd A., Kotwal G., Zhang Z., Arvikar S., Latz E., Fitzgerald K. A., Marshall W. L. 2004; Poxvirus protein N1L targets the I-κB kinase complex, inhibits signaling to NF-κB by the tumor necrosis factor superfamily of receptors, and inhibits NF-κB and IRF3 signaling by Toll-like receptors. J Biol Chem 279:36570–36578 [View Article][PubMed]
    [Google Scholar]
  16. Doceul V., Hollinshead M., van der Linden L., Smith G. L. 2010; Repulsion of superinfecting virions: a mechanism for rapid virus spread. Science 327:873–876 [View Article][PubMed]
    [Google Scholar]
  17. Fahy A. S., Clark R. H., Glyde E. F., Smith G. L. 2008; Vaccinia virus protein C16 acts intracellularly to modulate the host response and promote virulence. J Gen Virol 89:2377–2387 [View Article][PubMed]
    [Google Scholar]
  18. Falkner F. G., Moss B. 1990; Transient dominant selection of recombinant vaccinia viruses. J Virol 64:3108–3111[PubMed]
    [Google Scholar]
  19. Fenner F., Anderson D. A., Arita I., Jezek Z., Ladnyi I. D. 1988 Smallpox and its Eradication Geneva: World Health Organization;
    [Google Scholar]
  20. Gedey R., Jin X. L., Hinthong O., Shisler J. L. 2006; Poxviral regulation of the host NF-κB response: the vaccinia virus M2L protein inhibits induction of NF-κB activation via an ERK2 pathway in virus-infected human embryonic kidney cells. J Virol 80:8676–8685 [View Article][PubMed]
    [Google Scholar]
  21. Gloeckner C. J., Boldt K., Schumacher A., Roepman R., Ueffing M. 2007; A novel tandem affinity purification strategy for the efficient isolation and characterisation of native protein complexes. Proteomics 7:4228–4234 [View Article][PubMed]
    [Google Scholar]
  22. Goebel S. J., Johnson G. P., Perkus M. E., Davis S. W., Winslow J. P., Paoletti E. 1990; The complete DNA sequence of vaccinia virus. Virology 179:247–266, 517–563 [View Article][PubMed]
    [Google Scholar]
  23. Graham S. C., Bahar M. W., Cooray S., Chen R. A., Whalen D. M., Abrescia N. G., Alderton D., Owens R. J., Stuart D. I.other authors 2008; Vaccinia virus proteins A52 and B14 share a Bcl-2-like fold but have evolved to inhibit NF-κB rather than apoptosis. PLoS Pathog 4:e1000128 [View Article][PubMed]
    [Google Scholar]
  24. Gubser C., Hué S., Kellam P., Smith G. L. 2004; Poxvirus genomes: a phylogenetic analysis. J Gen Virol 85:105–117 [View Article][PubMed]
    [Google Scholar]
  25. Harte M. T., Haga I. R., Maloney G., Gray P., Reading P. C., Bartlett N. W., Smith G. L., Bowie A., O’Neill L. A. 2003; The poxvirus protein A52R targets Toll-like receptor signaling complexes to suppress host defense. J Exp Med 197:343–351 [View Article][PubMed]
    [Google Scholar]
  26. Hayden M. S., Ghosh S. 2008; Shared principles in NF-κB signaling. Cell 132:344–362 [View Article][PubMed]
    [Google Scholar]
  27. Jacobs N., Chen R. A., Gubser C., Najarro P., Smith G. L. 2006; Intradermal immune response after infection with Vaccinia virus. J Gen Virol 87:1157–1161 [View Article][PubMed]
    [Google Scholar]
  28. Kluczyk A., Siemion I. Z., Szewczuk Z., Wieczorek Z. 2002; The immunosuppressive activity of peptide fragments of vaccinia virus C10L protein and a hypothesis on the role of this protein in the viral invasion. Peptides 23:823–834 [View Article][PubMed]
    [Google Scholar]
  29. Maluquer de Motes C., Cooray S., Ren H., Almeida G. M., McGourty K., Bahar M. W., Stuart D. I., Grimes J. M., Graham S. C., Smith G. L. 2011; Inhibition of apoptosis and NF-κB activation by vaccinia protein N1 occur via distinct binding surfaces and make different contributions to virulence. PLoS Pathog 7:e1002430 [View Article][PubMed]
    [Google Scholar]
  30. McCoy L. E., Fahy A. S., Chen R. A., Smith G. L. 2010; Mutations in modified virus Ankara protein 183 render it a non-functional counterpart of B14, an inhibitor of nuclear factor κB activation. J Gen Virol 91:2216–2220 [View Article][PubMed]
    [Google Scholar]
  31. McMichael A. J., Michie C. A., Gotch F. M., Smith G. L., Moss B. 1986; Recognition of influenza A virus nucleoprotein by human cytotoxic T lymphocytes. J Gen Virol 67:719–726 [View Article][PubMed]
    [Google Scholar]
  32. Moss B. 1996; Genetically engineered poxviruses for recombinant gene expression, vaccination, and safety. Proc Natl Acad Sci U S A 93:11341–11348 [View Article][PubMed]
    [Google Scholar]
  33. Moss B. 2007; Poxviridae: the viruses and their replicaton. In Fields Virology, 5th edn. pp. 2905–2946 Edited by Knipe D. M. Philadelphia, PA: Lippincott Williams & Wilkins;
    [Google Scholar]
  34. Moss B., Smith G. L., Gerin J. L., Purcell R. H. 1984; Live recombinant vaccinia virus protects chimpanzees against hepatitis B. Nature 311:67–69 [View Article][PubMed]
    [Google Scholar]
  35. Myskiw C., Arsenio J., van Bruggen R., Deschambault Y., Cao J. 2009; Vaccinia virus E3 suppresses expression of diverse cytokines through inhibition of the PKR, NF-κB, and IRF3 pathways. J Virol 83:6757–6768 [View Article][PubMed]
    [Google Scholar]
  36. Niles E. G., Seto J. 1988; Vaccinia virus gene D8 encodes a virion transmembrane protein. J Virol 62:3772–3778[PubMed]
    [Google Scholar]
  37. Paoletti E., Lipinskas B. R., Samsonoff C., Mercer S., Panicali D. 1984; Construction of live vaccines using genetically engineered poxviruses: biological activity of vaccinia virus recombinants expressing the hepatitis B virus surface antigen and the herpes simplex virus glycoprotein D. Proc Natl Acad Sci U S A 81:193–197 [View Article][PubMed]
    [Google Scholar]
  38. Parkinson J. E., Smith G. L. 1994; Vaccinia virus gene A36R encodes a Mr 43–50 K protein on the surface of extracellular enveloped virus. Virology 204:376–390 [View Article][PubMed]
    [Google Scholar]
  39. Reading P. C., Smith G. L. 2003; A kinetic analysis of immune mediators in the lungs of mice infected with vaccinia virus and comparison with intradermal infection. J Gen Virol 84:1973–1983 [View Article][PubMed]
    [Google Scholar]
  40. Schröder M., Baran M., Bowie A. G. 2008; Viral targeting of DEAD box protein 3 reveals its role in TBK1/IKKϵ-mediated IRF activation. EMBO J 27:2147–2157 [View Article][PubMed]
    [Google Scholar]
  41. Seet B. T., Johnston J. B., Brunetti C. R., Barrett J. W., Everett H., Cameron C., Sypula J., Nazarian S. H., Lucas A., McFadden G. 2003; Poxviruses and immune evasion. Annu Rev Immunol 21:377–423 [View Article][PubMed]
    [Google Scholar]
  42. Shisler J. L., Jin X. L. 2004; The vaccinia virus K1L gene product inhibits host NF-κB activation by preventing IκBα degradation. J Virol 78:3553–3560 [View Article][PubMed]
    [Google Scholar]
  43. Smith G. L. 1994; Virus strategies for evasion of the host response to infection. Trends Microbiol 2:81–88 [View Article][PubMed]
    [Google Scholar]
  44. Smith G. L., Chan Y. S. 1991; Two vaccinia virus proteins structurally related to the interleukin-1 receptor and the immunoglobulin superfamily. J Gen Virol 72:511–518 [View Article][PubMed]
    [Google Scholar]
  45. Smith G. L., Mackett M., Moss B. 1983; Infectious vaccinia virus recombinants that express hepatitis B virus surface antigen. Nature 302:490–495 [View Article][PubMed]
    [Google Scholar]
  46. Stack J., Haga I. R., Schröder M., Bartlett N. W., Maloney G., Reading P. C., Fitzgerald K. A., Smith G. L., Bowie A. G. 2005; Vaccinia virus protein A46R targets multiple Toll-like-interleukin-1 receptor adaptors and contributes to virulence. J Exp Med 201:1007–1018 [View Article][PubMed]
    [Google Scholar]
  47. Tscharke D. C., Smith G. L. 1999; A model for vaccinia virus pathogenesis and immunity based on intradermal injection of mouse ear pinnae. J Gen Virol 80:2751–2755[PubMed]
    [Google Scholar]
  48. Tscharke D. C., Reading P. C., Smith G. L. 2002; Dermal infection with vaccinia virus reveals roles for virus proteins not seen using other inoculation routes. J Gen Virol 83:1977–1986[PubMed]
    [Google Scholar]
  49. Unterholzner L., Sumner R. P., Baran M., Ren H., Mansur D. S., Bourke N. M., Randow F., Smith G. L., Bowie A. G. 2011; Vaccinia virus protein C6 is a virulence factor that binds TBK-1 adaptor proteins and inhibits activation of IRF3 and IRF7. PLoS Pathog 7:e1002247 [View Article][PubMed]
    [Google Scholar]
  50. Upton C., Slack S., Hunter A. L., Ehlers A., Roper R. L. 2003; Poxvirus orthologous clusters: toward defining the minimum essential poxvirus genome. J Virol 77:7590–7600 [View Article][PubMed]
    [Google Scholar]
  51. Valentine R., Smith G. L. 2010; Inhibition of the RNA polymerase III-mediated dsDNA-sensing pathway of innate immunity by vaccinia virus protein E3. J Gen Virol 91:2221–2229 [View Article][PubMed]
    [Google Scholar]
  52. Williamson J. D., Reith R. W., Jeffrey L. J., Arrand J. R., Mackett M. 1990; Biological characterization of recombinant vaccinia viruses in mice infected by the respiratory route. J Gen Virol 71:2761–2767 [View Article][PubMed]
    [Google Scholar]
  53. Yewdell J. W., Bennink J. R., Smith G. L., Moss B. 1985; Influenza A virus nucleoprotein is a major target antigen for cross-reactive anti-influenza A virus cytotoxic T lymphocytes. Proc Natl Acad Sci U S A 82:1785–1789 [View Article][PubMed]
    [Google Scholar]
  54. Yuwen H., Cox J. H., Yewdell J. W., Bennink J. R., Moss B. 1993; Nuclear localization of a double-stranded RNA-binding protein encoded by the vaccinia virus E3L gene. Virology 195:732–744 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.045070-0
Loading
/content/journal/jgv/10.1099/vir.0.045070-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error