1887

Abstract

RH2 is a novel oncolytic herpes simplex virus type 1 (HSV-1) produced by simultaneous infection with neurovirulent γ34.5 gene-deficient HSV-1 R849 derived from strain F and the spontaneously occurring, fusogenic HSV-1 HF in cell culture. The genome of RH2 was studied using Genome Sequencer FLX. RH2 comprised 149 643 bp and it was shown that the gene was inserted into the γ34.5 gene of R849. Comparison of ORFs revealed that RH2 had 100 % identity with strain F in 21/58 unique long (UL) genes (36.2 %) and 1/13 unique short (US) genes (7.7 %). RH2 had 100 % amino acid identity with HF10 in 24/58 UL genes (41.4 %) and 9/13 US genes (69.2 %). Twelve genes, including UL27 (gB), US4 (gG) and UL6 (gD), had amino acid changes unique to RH2. Amino acid changes in gB occurred at positions 459 (T→A) and 817 (L→P). Other unique features were the amino acids missing in UL36 (VP1/2) and UL46 (VP11/12). Thus, RH2 is an HF10-based vector preserving the fusogenic amino acid changes of gB but lacking the γ34.5 gene. RH2 is expected to be a version of HF10 useful for the treatment of brain tumours as well as oral squamous cell carcinoma. Spontaneously occurring HSV-1 mutants may also be useful clinically, as their genome sequences can easily be determined by this genome sequencing system.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.044834-0
2013-04-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/jgv/94/4/726.html?itemId=/content/journal/jgv/10.1099/vir.0.044834-0&mimeType=html&fmt=ahah

References

  1. Albert I., Mavrich T. N., Tomsho L. P., Qi J., Zanton S. J., Schuster S. C., Pugh B. F.. ( 2007;). Translational and rotational settings of H2A.Z nucleosomes across the Saccharomyces cerevisiae genome. . Nature 446:, 572–576. [CrossRef][PubMed]
    [Google Scholar]
  2. Andreansky S., Soroceanu L., Flotte E. R., Chou J., Markert J. M., Gillespie G. Y., Roizman B., Whitley R. J.. ( 1997;). Evaluation of genetically engineered herpes simplex viruses as oncolytic agents for human malignant brain tumors. . Cancer Res 57:, 1502–1509.[PubMed]
    [Google Scholar]
  3. Atanasiu D., Whitbeck J. C., de Leon M. P., Lou H., Hannah B. P., Cohen G. H., Eisenberg R. J.. ( 2010;). Bimolecular complementation defines functional regions of herpes simplex virus gB that are involved with gH/gL as a necessary step leading to cell fusion. . J Virol 84:, 3825–3834. [CrossRef][PubMed]
    [Google Scholar]
  4. Baines J. D., Ward P. L., Campadelli-Fiume G., Roizman B.. ( 1991;). The UL20 gene of herpes simplex virus 1 encodes a function necessary for viral egress. . J Virol 65:, 6414–6424.[PubMed]
    [Google Scholar]
  5. Bzik D. J., Fox B. A., DeLuca N. A., Person S.. ( 1984;). Nucleotide sequence of a region of the herpes simplex virus type 1 gB glycoprotein gene: mutations affecting rate of virus entry and cell fusion. . Virology 137:, 185–190. [CrossRef][PubMed]
    [Google Scholar]
  6. Cai W. H., Gu B., Person S.. ( 1988;). Role of glycoprotein B of herpes simplex virus type 1 in viral entry and cell fusion. . J Virol 62:, 2596–2604.[PubMed]
    [Google Scholar]
  7. Carfí A., Willis S. H., Whitbeck J. C., Krummenacher C., Cohen G. H., Eisenberg R. J., Wiley D. C.. ( 2001;). Herpes simplex virus glycoprotein D bound to the human receptor HveA. . Mol Cell 8:, 169–179. [CrossRef][PubMed]
    [Google Scholar]
  8. Chouljenko V. N., Iyer A. V., Chowdhury S., Kim J., Kousoulas K. G.. ( 2010;). The herpes simplex virus type 1 UL20 protein and the amino terminus of glycoprotein K (gK) physically interact with gB. . J Virol 84:, 8596–8606. [CrossRef][PubMed]
    [Google Scholar]
  9. Chowdary T. K., Cairns T. M., Atanasiu D., Cohen G. H., Eisenberg R. J., Heldwein E. E.. ( 2010;). Crystal structure of the conserved herpesvirus fusion regulator complex gH–gL. . Nat Struct Mol Biol 17:, 882–888. [CrossRef][PubMed]
    [Google Scholar]
  10. Crump C. M., Bruun B., Bell S., Pomeranz L. E., Minson T., Browne H. M.. ( 2004;). Alphaherpesvirus glycoprotein M causes the relocalization of plasma membrane proteins. . J Gen Virol 85:, 3517–3527. [CrossRef][PubMed]
    [Google Scholar]
  11. Diakidi-Kosta A., Michailidou G., Kontogounis G., Sivropoulou A., Arsenakis M.. ( 2003;). A single amino acid substitution in the cytoplasmic tail of the glycoprotein B of herpes simplex virus 1 affects both syncytium formation and binding to intracellular heparan sulfate. . Virus Res 93:, 99–108. [CrossRef][PubMed]
    [Google Scholar]
  12. Dolter K. E., Ramaswamy R., Holland T. C.. ( 1994;). Syncytial mutations in the herpes simplex virus type 1 gK (UL53) gene occur in two distinct domains. . J Virol 68:, 8277–8281.[PubMed]
    [Google Scholar]
  13. Forrester A., Farrell H., Wilkinson G., Kaye J., Davis-Poynter N., Minson T.. ( 1992;). Construction and properties of a mutant of herpes simplex virus type 1 with glycoprotein H coding sequences deleted. . J Virol 66:, 341–348.[PubMed]
    [Google Scholar]
  14. Foster T. P., Melancon J. M., Kousoulas K. G.. ( 2001;). An α-helical domain within the carboxyl terminus of herpes simplex virus type 1 (HSV-1) glycoprotein B (gB) is associated with cell fusion and resistance to heparin inhibition of cell fusion. . Virology 287:, 18–29. [CrossRef][PubMed]
    [Google Scholar]
  15. Foster T. P., Alvarez X., Kousoulas K. G.. ( 2003;). Plasma membrane topology of syncytial domains of herpes simplex virus type 1 glycoprotein K (gK): the UL20 protein enables cell surface localization of gK but not gK-mediated cell-to-cell fusion. . J Virol 77:, 499–510. [CrossRef][PubMed]
    [Google Scholar]
  16. Fu X., Zhang X.. ( 2002;). Potent systemic antitumor activity from an oncolytic herpes simplex virus of syncytial phenotype. . Cancer Res 62:, 2306–2312.[PubMed]
    [Google Scholar]
  17. Fu X., Tao L., Jin A., Vile R., Brenner M. K., Zhang X.. ( 2003;). Expression of a fusogenic membrane glycoprotein by an oncolytic herpes simplex virus potentiates the viral antitumor effect. . Mol Ther 7:, 748–754. [CrossRef][PubMed]
    [Google Scholar]
  18. Fujimoto Y., Mizuno T., Sugiura S., Goshima F., Kohno S., Nakashima T., Nishiyama Y.. ( 2006;). Intratumoral injection of herpes simplex virus HF10 in recurrent head and neck squamous cell carcinoma. . Acta Otolaryngol 126:, 1115–1117. [CrossRef][PubMed]
    [Google Scholar]
  19. Gage P. J., Levine M., Glorioso J. C.. ( 1993;). Syncytium-inducing mutations localize to two discrete regions within the cytoplasmic domain of herpes simplex virus type 1 glycoprotein B. . J Virol 67:, 2191–2201.[PubMed]
    [Google Scholar]
  20. Geraghty R. J., Krummenacher C., Cohen G. H., Eisenberg R. J., Spear P. G.. ( 1998;). Entry of alphaherpesviruses mediated by poliovirus receptor-related protein 1 and poliovirus receptor. . Science 280:, 1618–1620. [CrossRef][PubMed]
    [Google Scholar]
  21. Harrington K. J., Hingorani M., Tanay M. A., Hickey J., Bhide S. A., Clarke P. M., Renouf L. C., Thway K., Sibtain A.. & other authors ( 2010;). Phase I/II study of oncolytic HSV GM-CSF in combination with radiotherapy and cisplatin in untreated stage III/IV squamous cell cancer of the head and neck. . Clin Cancer Res 16:, 4005–4015. [CrossRef][PubMed]
    [Google Scholar]
  22. Hiller N. L., Janto B., Hogg J. S., Boissy R., Yu S., Powell E., Keefe R., Ehrlich N. E., Shen K.. & other authors ( 2007;). Comparative genomic analyses of seventeen Streptococcus pneumoniae strains: insights into the pneumococcal supragenome. . J Bacteriol 189:, 8186–8195. [CrossRef][PubMed]
    [Google Scholar]
  23. Hutchinson L., Goldsmith K., Snoddy D., Ghosh H., Graham F. L., Johnson D. C.. ( 1992;). Identification and characterization of a novel herpes simplex virus glycoprotein, gK, involved in cell fusion. . J Virol 66:, 5603–5609.[PubMed]
    [Google Scholar]
  24. Hutchison C. A. III. ( 2007;). DNA sequencing: bench to bedside and beyond. . Nucleic Acids Res 35:, 6227–6237. [CrossRef][PubMed]
    [Google Scholar]
  25. Israyelyan A., Chouljenko V. N., Baghian A., David A. T., Kearney M. T., Kousoulas K. G.. ( 2008;). Herpes simplex virus type-1(HSV-1) oncolytic and highly fusogenic mutants carrying the NV1020 genomic deletion effectively inhibit primary and metastatic tumors in mice. . Virol J 5:, 68. [CrossRef][PubMed]
    [Google Scholar]
  26. Kemeny N., Brown K., Covey A., Kim T., Bhargava A., Brody L., Guilfoyle B., Haag N. P., Karrasch M.. & other authors ( 2006;). Phase I, open-label, dose-escalating study of a genetically engineered herpes simplex virus, NV1020, in subjects with metastatic colorectal carcinoma to the liver. . Hum Gene Ther 17:, 1214–1224. [CrossRef][PubMed]
    [Google Scholar]
  27. Klupp B. G., Granzow H., Karger A., Mettenleiter T. C.. ( 2005;). Identification, subviral localization, and functional characterization of the pseudorabies virus UL17 protein. . J Virol 79:, 13442–13453. [CrossRef][PubMed]
    [Google Scholar]
  28. Klyachkin Y. M., Stoops K. D., Geraghty R. J.. ( 2006;). Herpes simplex virus type 1 glycoprotein L mutants that fail to promote trafficking of glycoprotein H and fail to function in fusion can induce binding of glycoprotein L-dependent anti-glycoprotein H antibodies. . J Gen Virol 87:, 759–767. [CrossRef][PubMed]
    [Google Scholar]
  29. Ko D. H., Cunningham A. L., Diefenbach R. J.. ( 2010;). The major determinant for addition of tegument protein pUL48 (VP16) to capsids in herpes simplex virus type 1 is the presence of the major tegument protein pUL36 (VP1/2). . J Virol 84:, 1397–1405. [CrossRef][PubMed]
    [Google Scholar]
  30. Ligas M. W., Johnson D. C.. ( 1988;). A herpes simplex virus mutant in which glycoprotein D sequences are replaced by β-galactosidase sequences binds to but is unable to penetrate into cells. . J Virol 62:, 1486–1494.[PubMed]
    [Google Scholar]
  31. Liu B. L., Robinson M., Han Z. Q., Branston R. H., English C., Reay P., McGrath Y., Thomas S. K., Thornton M.. & other authors ( 2003;). ICP34.5 deleted herpes simplex virus with enhanced oncolytic, immune stimulating, and anti-tumour properties. . Gene Ther 10:, 292–303. [CrossRef][PubMed]
    [Google Scholar]
  32. MacKie R. M., Stewart B., Brown S. M.. ( 2001;). Intralesional injection of herpes simplex virus 1716 in metastatic melanoma. . Lancet 357:, 525–526. [CrossRef][PubMed]
    [Google Scholar]
  33. Manoj S., Jogger C. R., Myscofski D., Yoon M., Spear P. G.. ( 2004;). Mutations in herpes simplex virus glycoprotein D that prevent cell entry via nectins and alter cell tropism. . Proc Natl Acad Sci U S A 101:, 12414–12421. [CrossRef][PubMed]
    [Google Scholar]
  34. Margulies M., Egholm M., Altman W. E., Attiya S., Bader J. S., Bemben L. A., Berka J., Braverman M. S., Chen Y. J.. & other authors ( 2005;). Genome sequencing in microfabricated high-density picolitre reactors. . Nature 437:, 376–380.[PubMed]
    [Google Scholar]
  35. McGeoch D. J., Dalrymple M. A., Davison A. J., Dolan A., Frame M. C., McNab D., Perry L. J., Scott J. E., Taylor P.. ( 1988;). The complete DNA sequence of the long unique region in the genome of herpes simplex virus type 1. . J Gen Virol 69:, 1531–1574. [CrossRef][PubMed]
    [Google Scholar]
  36. McKnight J. L., Kristie T. M., Roizman B.. ( 1987;). Binding of the virion protein mediating alpha gene induction in herpes simplex virus 1-infected cells to its cis site requires cellular proteins. . Proc Natl Acad Sci U S A 84:, 7061–7065. [CrossRef][PubMed]
    [Google Scholar]
  37. Melancon J. M., Foster T. P., Kousoulas K. G.. ( 2004;). Genetic analysis of the herpes simplex virus type 1 UL20 protein domains involved in cytoplasmic virion envelopment and virus-induced cell fusion. . J Virol 78:, 7329–7343. [CrossRef][PubMed]
    [Google Scholar]
  38. Mineta T., Rabkin S. D., Yazaki T., Hunter W. D., Martuza R. L.. ( 1995;). Attenuated multi-mutated herpes simplex virus-1 for the treatment of malignant gliomas. . Nat Med 1:, 938–943. [CrossRef][PubMed]
    [Google Scholar]
  39. Montgomery R. I., Warner M. S., Lum B. J., Spear P. G.. ( 1996;). Herpes simplex virus-1 entry into cells mediated by a novel member of the TNF/NGF receptor family. . Cell 87:, 427–436. [CrossRef][PubMed]
    [Google Scholar]
  40. Nakamori M., Fu X., Meng F., Jin A., Tao L., Bast R. C. Jr, Zhang X.. ( 2003;). Effective therapy of metastatic ovarian cancer with an oncolytic herpes simplex virus incorporating two membrane fusion mechanisms. . Clin Cancer Res 9:, 2727–2733.[PubMed]
    [Google Scholar]
  41. Nakao A., Kimata H., Imai T., Kikumori T., Teshigahara O., Nagasaka T., Goshima F., Nishiyama Y.. ( 2004;). Intratumoral injection of herpes simplex virus HF10 in recurrent breast cancer. . Ann Oncol 15:, 988–989. [CrossRef][PubMed]
    [Google Scholar]
  42. Nakao A., Kasuya H., Sahin T. T., Nomura N., Kanzaki A., Misawa M., Shirota T., Yamada S., Fujii T.. & other authors ( 2011;). A phase I dose-escalation clinical trial of intraoperative direct intratumoral injection of HF10 oncolytic virus in non-resectable patients with advanced pancreatic cancer. . Cancer Gene Ther 18:, 167–175. [CrossRef][PubMed]
    [Google Scholar]
  43. Newcomb W. W., Brown J. C.. ( 2010;). Structure and capsid association of the herpesvirus large tegument protein UL36. . J Virol 84:, 9408–9414. [CrossRef][PubMed]
    [Google Scholar]
  44. Ogawa F., Takaoka H., Iwai S., Aota K., Yura Y.. ( 2008;). Combined oncolytic virotherapy with herpes simplex virus for oral squamous cell carcinoma. . Anticancer Res 28: (6A), 3637–3645.[PubMed]
    [Google Scholar]
  45. Peng T., Ponce-de-Leon M., Jiang H., Dubin G., Lubinski J. M., Eisenberg R. J., Cohen G. H.. ( 1998;). The gH–gL complex of herpes simplex virus (HSV) stimulates neutralizing antibody and protects mice against HSV type 1 challenge. . J Virol 72:, 65–72.[PubMed]
    [Google Scholar]
  46. Roop C., Hutchinson L., Johnson D. C.. ( 1993;). A mutant herpes simplex virus type 1 unable to express glycoprotein L cannot enter cells, and its particles lack glycoprotein H. . J Virol 67:, 2285–2297.[PubMed]
    [Google Scholar]
  47. Rowan K.. ( 2010;). Oncolytic viruses move forward in clinical trials. . J Natl Cancer Inst 102:, 590–595. [CrossRef][PubMed]
    [Google Scholar]
  48. Shukla D., Liu J., Blaiklock P., Shworak N. W., Bai X., Esko J. D., Cohen G. H., Eisenberg R. J., Rosenberg R. D., Spear P. G.. ( 1999;). A novel role for 3-O-sulfated heparan sulfate in herpes simplex virus 1 entry. . Cell 99:, 13–22. [CrossRef][PubMed]
    [Google Scholar]
  49. Shukla D., Dal Canto M. C., Rowe C. L., Spear P. G.. ( 2000;). Striking similarity of murine nectin-1α to human nectin-1α (HveC) in sequence and activity as a glycoprotein D receptor for alphaherpesvirus entry. . J Virol 74:, 11773–11781. [CrossRef][PubMed]
    [Google Scholar]
  50. Simpson G. R., Han Z., Liu B., Wang Y., Campbell G., Coffin R. S.. ( 2006;). Combination of a fusogenic glycoprotein, prodrug activation, and oncolytic herpes simplex virus for enhanced local tumor control. . Cancer Res 66:, 4835–4842. [CrossRef][PubMed]
    [Google Scholar]
  51. Spatz S. J., Rue C. A.. ( 2008;). Sequence determination of a mildly virulent strain (CU-2) of Gallid herpesvirus type 2 using 454 pyrosequencing. . Virus Genes 36:, 479–489. [CrossRef][PubMed]
    [Google Scholar]
  52. Swaminathan K., Varala K., Hudson M. E.. ( 2007;). Global repeat discovery and estimation of genomic copy number in a large, complex genome using a high-throughput 454 sequence survey. . BMC Genomics 8:, 132. [CrossRef][PubMed]
    [Google Scholar]
  53. Szpara M. L., Parsons L., Enquist L. W.. ( 2010;). Sequence variability in clinical and laboratory isolates of herpes simplex virus 1 reveals new mutations. . J Virol 84:, 5303–5313. [CrossRef][PubMed]
    [Google Scholar]
  54. Takakuwa H., Goshima F., Nozawa N., Yoshikawa T., Kimata H., Nakao A., Nawa A., Kurata T., Sata T., Nishiyama Y.. ( 2003;). Oncolytic viral therapy using a spontaneously generated herpes simplex virus type 1 variant for disseminated peritoneal tumor in immunocompetent mice. . Arch Virol 148:, 813–825. [CrossRef][PubMed]
    [Google Scholar]
  55. Takaoka H., Takahashi G., Ogawa F., Imai T., Iwai S., Yura Y.. ( 2011;). A novel fusogenic herpes simplex virus for oncolytic virotherapy of squamous cell carcinoma. . Virol J 8:, 294. [CrossRef][PubMed]
    [Google Scholar]
  56. Tiwari V., Clement C., Scanlan P. M., Kowlessur D., Yue B. Y. J., Shukla D.. ( 2005;). A role for herpesvirus entry mediator as the receptor for herpes simplex virus 1 entry into primary human trabecular meshwork cells. . J Virol 79:, 13173–13179. [CrossRef][PubMed]
    [Google Scholar]
  57. Torres T. T., Metta M., Ottenwälder B., Schlötterer C.. ( 2008;). Gene expression profiling by massively parallel sequencing. . Genome Res 18:, 172–177. [CrossRef][PubMed]
    [Google Scholar]
  58. Ushijima Y., Luo C., Goshima F., Yamauchi Y., Kimura H., Nishiyama Y.. ( 2007;). Determination and analysis of the DNA sequence of highly attenuated herpes simplex virus type 1 mutant HF10, a potential oncolytic virus. . Microbes Infect 9:, 142–149. [CrossRef][PubMed]
    [Google Scholar]
  59. Wagner M. J., Smiley J. R.. ( 2011;). Herpes simplex virus requires VP11/12 to activate Src family kinase-phosphoinositide 3-kinase-Akt signaling. . J Virol 85:, 2803–2812. [CrossRef][PubMed]
    [Google Scholar]
  60. Walev I., Lingen M., Lazzaro M., Weise K., Falke D.. ( 1994;). Cyclosporin A resistance of herpes simplex virus-induced “fusion from within” as a phenotypical marker of mutations in the Syn 3 locus of the glycoprotein B gene. . Virus Genes 8:, 83–86. [CrossRef][PubMed]
    [Google Scholar]
  61. Wheeler C. E.. ( 1958;). The effect of temperature upon the production of herpes simplex virus in tissue culture. . J Immunol 81:, 98–106.[PubMed]
    [Google Scholar]
  62. Zahariadis G., Wagner M. J., Doepker R. C., Maciejko J. M., Crider C. M., Jerome K. R., Smiley J. R.. ( 2008;). Cell-type-specific tyrosine phosphorylation of the herpes simplex virus tegument protein VP11/12 encoded by gene UL46. . J Virol 82:, 6098–6108. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.044834-0
Loading
/content/journal/jgv/10.1099/vir.0.044834-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error