1887

Abstract

Interspecies transmissions substantially contribute to the epidemiology of small ruminant lentiviruses (SRLVs), including caprine arthritis encephalitis virus (CAEV) and visna-maëdi virus. However, comprehensive studies of host–virus interactions during SRLV adaptation to the new host are lacking. In this study, virological and serological features were analysed over a 6 month period in five sheep and three goats experimentally infected with a CAEV strain. Provirus load at the early stage of infection was significantly higher in sheep than in goats. A broad antibody reactivity against the matrix and capsid proteins was detected in goats, whereas the response to these antigens was mostly type-specific in sheep. The humoral response to the major immunodominant domain of the surface unit glycoprotein was type-specific, regardless of the host species. These species-specific immune responses were then confirmed in naturally infected sheep and goats using sera from mixed flocks in which interspecies transmissions were reported. Taken together, these results provide evidence that SRLV infections evolve in a host-dependent manner, with distinct host–virus interactions in sheep and goats, and highlight the need to consider both SRLV genotypes in diagnosis, particularly in sheep.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.044768-0
2013-03-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/jgv/94/3/634.html?itemId=/content/journal/jgv/10.1099/vir.0.044768-0&mimeType=html&fmt=ahah

References

  1. Angelopoulou K., Poutahidis T., Brellou G. D., Greenland T., Vlemmas I.. ( 2008;). A deletion in the R region of long terminal repeats in small ruminant lentiviruses is associated with decreased pathology in the lung. . Vet J 175:, 346–355. [CrossRef][PubMed]
    [Google Scholar]
  2. Bertoni G., Hertig C., Zahno M. L., Vogt H. R., Dufour S., Cordano P., Peterhans E., Cheevers W. P., Sonigo P., Pancino G.. ( 2000;). B-cell epitopes of the envelope glycoprotein of caprine arthritis-encephalitis virus and antibody response in infected goats. . J Gen Virol 81:, 2929–2940.[PubMed]
    [Google Scholar]
  3. Brahic M., Stowring L., Ventura P., Haase A. T.. ( 1981;). Gene expression in visna virus infection in sheep. . Nature 292:, 240–242. [CrossRef][PubMed]
    [Google Scholar]
  4. Brodie S. J., Pearson L. D., Zink M. C., Bickle H. M., Anderson B. C., Marcom K. A., DeMartini J. C.. ( 1995;). Ovine lentivirus expression and disease. Virus replication, but not entry, is restricted to macrophages of specific tissues. . Am J Pathol 146:, 250–263.[PubMed]
    [Google Scholar]
  5. Carrozza M. L., Mazzei M., Lacerenza D., Del Chiaro L., Giammarioli M., Marini C., Rutili D., Rosati S., Tolari F.. ( 2009;). Seroconversion against SU5 derived synthetic peptides in sheep experimentally infected with different SRLV genotypes. . Vet Microbiol 137:, 369–374. [CrossRef][PubMed]
    [Google Scholar]
  6. Fluri A., Nenci C., Zahno M. L., Vogt H. R., Charan S., Busato A., Pancino G., Peterhans E., Obexer-Ruff G., Bertoni G.. ( 2006;). The MHC-haplotype influences primary, but not memory, immune responses to an immunodominant peptide containing T- and B-cell epitopes of the caprine arthritis encephalitis virus Gag protein. . Vaccine 24:, 597–606. [CrossRef][PubMed]
    [Google Scholar]
  7. Gelmetti D., Gibelli L., Brocchi E., Cammarata G.. ( 2000;). Using a panel of monoclonal antibodies to detect Maedi virus (MV) in chronic pulmonary distress of sheep. . J Virol Methods 88:, 9–14. [CrossRef][PubMed]
    [Google Scholar]
  8. Germain K., Valas S.. ( 2006;). Distribution and heterogeneity of small ruminant lentivirus envelope subtypes in naturally infected French sheep. . Virus Res 120:, 156–162. [CrossRef][PubMed]
    [Google Scholar]
  9. Germain K., Croise B., Valas S.. ( 2008;). Field evaluation of a gag/env heteroduplex mobility assay for genetic subtyping of small-ruminant lentiviruses. . J Gen Virol 89:, 2020–2028. [CrossRef][PubMed]
    [Google Scholar]
  10. Gjerset B., Jonassen C. M., Rimstad E.. ( 2007;). Natural transmission and comparative analysis of small ruminant lentiviruses in the Norwegian sheep and goat populations. . Virus Res 125:, 153–161. [CrossRef][PubMed]
    [Google Scholar]
  11. Gjerset B., Rimstad E., Teige J., Soetaert K., Jonassen C. M.. ( 2009;). Impact of natural sheep-goat transmission on detection and control of small ruminant lentivirus group C infections. . Vet Microbiol 135:, 231–238. [CrossRef][PubMed]
    [Google Scholar]
  12. Glaria I., Reina R., Crespo H., de Andrés X., Ramírez H., Biescas E., Pérez M. M., Badiola J., Luján L.. & other authors ( 2009;). Phylogenetic analysis of SRLV sequences from an arthritic sheep outbreak demonstrates the introduction of CAEV-like viruses among Spanish sheep. . Vet Microbiol 138:, 156–162. [CrossRef][PubMed]
    [Google Scholar]
  13. Gogolewski R. P., Adams D. S., McGuire T. C., Banks K. L., Cheevers W. P.. ( 1985;). Antigenic cross-reactivity between caprine arthritis-encephalitis, visna and progressive pneumonia viruses involves all virion-associated proteins and glycoproteins. . J Gen Virol 66:, 1233–1240. [CrossRef][PubMed]
    [Google Scholar]
  14. Grego E., Profiti M., Giammarioli M., Giannino L., Rutili D., Woodall C., Rosati S.. ( 2002;). Genetic heterogeneity of small ruminant lentiviruses involves immunodominant epitope of capsid antigen and affects sensitivity of single-strain-based immunoassay. . Clin Diagn Lab Immunol 9:, 828–832.[PubMed]
    [Google Scholar]
  15. Grego E., Bertolotti L., Carrozza M. L., Profiti M., Mazzei M., Tolari F., Rosati S.. ( 2005;). Genetic and antigenic characterization of the matrix protein of two genetically distinct ovine lentiviruses. . Vet Microbiol 106:, 179–185. [CrossRef][PubMed]
    [Google Scholar]
  16. Grego E., Bertolotti L., Quasso A., Profiti M., Lacerenza D., Muz D., Rosati S.. ( 2007;). Genetic characterization of small ruminant lentivirus in Italian mixed flocks: evidence for a novel genotype circulating in a local goat population. . J Gen Virol 88:, 3423–3427. [CrossRef][PubMed]
    [Google Scholar]
  17. Herrmann-Hoesing L. M., Noh S. M., White S. N., Snekvik K. R., Truscott T., Knowles D. P.. ( 2009;). Peripheral ovine progressive pneumonia provirus levels correlate with and predict histological tissue lesion severity in naturally infected sheep. . Clin Vaccine Immunol 16:, 551–557. [CrossRef][PubMed]
    [Google Scholar]
  18. Herrmann-Hoesing L. M., Broughton-Neiswanger L. E., Gouine K. C., White S. N., Mousel M. R., Lewis G. S., Marshall K. L., Knowles D. P.. ( 2010;). Evaluation of a caprine arthritis-encephalitis virus/maedi-visna virus indirect enzyme-linked immunosorbent assay in the serological diagnosis of ovine progressive pneumonia virus in U.S. sheep. . Clin Vaccine Immunol 17:, 307–310. [CrossRef][PubMed]
    [Google Scholar]
  19. Hötzel I., Cheevers W. P.. ( 2001;). Host range of small-ruminant lentivirus cytopathic variants determined with a selectable caprine arthritis- encephalitis virus pseudotype system. . J Virol 75:, 7384–7391. [CrossRef][PubMed]
    [Google Scholar]
  20. Houwers D. J., Nauta I. M.. ( 1989;). Immunoblot analysis of the antibody response to ovine lentivirus infections. . Vet Microbiol 19:, 127–139. [CrossRef][PubMed]
    [Google Scholar]
  21. Kajikawa O., Lairmore M. D., DeMartini J. C.. ( 1990;). Analysis of antibody responses to phenotypically distinct lentiviruses. . J Clin Microbiol 28:, 764–770.[PubMed]
    [Google Scholar]
  22. Karr B. M., Chebloune Y., Leung K., Narayan O.. ( 1996;). Genetic characterization of two phenotypically distinct North American ovine lentiviruses and their possible origin from caprine arthritis-encephalitis virus. . Virology 225:, 1–10. [CrossRef][PubMed]
    [Google Scholar]
  23. Knowles D. Jr, Cheevers W., McGuire T., Stem T., Gorham J.. ( 1990;). Severity of arthritis is predicted by antibody response to gp135 in chronic infection with caprine arthritis-encephalitis virus. . J Virol 64:, 2396–2398.[PubMed]
    [Google Scholar]
  24. Lacerenza D., Giammarioli M., Grego E., Marini C., Profiti M., Rutili D., Rosati S.. ( 2006;). Antibody response in sheep experimentally infected with different small ruminant lentivirus genotypes. . Vet Immunol Immunopathol 112:, 264–271. [CrossRef][PubMed]
    [Google Scholar]
  25. Lairmore M. D., Akita G. Y., Russell H. I., DeMartini J. C.. ( 1987;). Replication and cytopathic effects of ovine lentivirus strains in alveolar macrophages correlate with in vivo pathogenicity. . J Virol 61:, 4038–4042.[PubMed]
    [Google Scholar]
  26. Lifson J. D., Nowak M. A., Goldstein S., Rossio J. L., Kinter A., Vasquez G., Wiltrout T. A., Brown C., Schneider D.. & other authors ( 1997;). The extent of early viral replication is a critical determinant of the natural history of simian immunodeficiency virus infection. . J Virol 71:, 9508–9514.[PubMed]
    [Google Scholar]
  27. Luján L., Begara I., Collie D., Watt N. J.. ( 1994;). Ovine lentivirus (maedi-visna virus) protein expression in sheep alveolar macrophages. . Vet Pathol 31:, 695–703. [CrossRef][PubMed]
    [Google Scholar]
  28. Mordasini F., Vogt H. R., Zahno M. L., Maeschli A., Nenci C., Zanoni R., Peterhans E., Bertoni G.. ( 2006;). Analysis of the antibody response to an immunodominant epitope of the envelope glycoprotein of a lentivirus and its diagnostic potential. . J Clin Microbiol 44:, 981–991. [CrossRef][PubMed]
    [Google Scholar]
  29. Narayan O., Sheffer D., Griffin D. E., Clements J., Hess J.. ( 1984;). Lack of neutralizing antibodies to caprine arthritis-encephalitis lentivirus in persistently infected goats can be overcome by immunization with inactivated Mycobacterium tuberculosis. . J Virol 49:, 349–355.[PubMed]
    [Google Scholar]
  30. Olech M., Rachid A., Croisé B., Kuźmak J., Valas S.. ( 2012;). Genetic and antigenic characterization of small ruminant lentiviruses circulating in Poland. . Virus Res 163:, 528–536. [CrossRef][PubMed]
    [Google Scholar]
  31. Oskarsson T., Hreggvidsdóttir H. S., Agnarsdóttir G., Matthíasdóttir S., Ogmundsdóttir M. H., Jónsson S. R., Georgsson G., Ingvarsson S., Andrésson O. S., Andrésdóttir V.. ( 2007;). Duplicated sequence motif in the long terminal repeat of maedi-visna virus extends cell tropism and is associated with neurovirulence. . J Virol 81:, 4052–4057. [CrossRef][PubMed]
    [Google Scholar]
  32. Pantaleo G., Demarest J. F., Schacker T., Vaccarezza M., Cohen O. J., Daucher M., Graziosi C., Schnittman S. S., Quinn T. C.. & other authors ( 1997;). The qualitative nature of the primary immune response to HIV infection is a prognosticator of disease progression independent of the initial level of plasma viremia. . Proc Natl Acad Sci U S A 94:, 254–258. [CrossRef][PubMed]
    [Google Scholar]
  33. Pisoni G., Quasso A., Moroni P.. ( 2005;). Phylogenetic analysis of small-ruminant lentivirus subtype B1 in mixed flocks: evidence for natural transmission from goats to sheep. . Virology 339:, 147–152. [CrossRef][PubMed]
    [Google Scholar]
  34. Pisoni G., Bertoni G., Manarolla G., Vogt H. R., Scaccabarozzi L., Locatelli C., Moroni P.. ( 2010;). Genetic analysis of small ruminant lentiviruses following lactogenic transmission. . Virology 407:, 91–99. [CrossRef][PubMed]
    [Google Scholar]
  35. Quérat G., Barban V., Sauze N., Filippi P., Vigne R., Russo P., Vitu C.. ( 1984;). Highly lytic and persistent lentiviruses naturally present in sheep with progressive pneumonia are genetically distinct. . J Virol 52:, 672–679.[PubMed]
    [Google Scholar]
  36. Reina R., Grego E., Profiti M., Glaria I., Robino P., Quasso A., Amorena B., Rosati S.. ( 2009;). Development of specific diagnostic test for small ruminant lentivirus genotype E. . Vet Microbiol 138:, 251–257. [CrossRef][PubMed]
    [Google Scholar]
  37. Reina R., Bertolotti L., Dei Giudici S., Puggioni G., Ponti N., Profiti M., Patta C., Rosati S.. ( 2010;). Small ruminant lentivirus genotype E is widespread in Sarda goat. . Vet Microbiol 144:, 24–31. [CrossRef][PubMed]
    [Google Scholar]
  38. Reina R., Juganaru M. M., Profiti M., Cascio P., Cerruti F., Bertolotti L., De Meneghi D., Amorena B., Rosati S.. ( 2011;). Immunological parameters in goats experimentally infected with SRLV genotype E, strain Roccaverano. . Vet Immunol Immunopathol 139:, 237–244. [CrossRef][PubMed]
    [Google Scholar]
  39. Rosati S., Mannelli A., Merlo T., Ponti N.. ( 1999;). Characterization of the immunodominant cross-reacting epitope of visna maedi virus and caprine arthritis-encephalitis virus capsid antigen. . Virus Res 61:, 177–183. [CrossRef][PubMed]
    [Google Scholar]
  40. Shah C., Böni J., Huder J. B., Vogt H. R., Mühlherr J., Zanoni R., Miserez R., Lutz H., Schüpbach J.. ( 2004a;). Phylogenetic analysis and reclassification of caprine and ovine lentiviruses based on 104 new isolates: evidence for regular sheep-to-goat transmission and worldwide propagation through livestock trade. . Virology 319:, 12–26. [CrossRef][PubMed]
    [Google Scholar]
  41. Shah C., Huder J. B., Böni J., Schönmann M., Mühlherr J., Lutz H., Schüpbach J.. ( 2004b;). Direct evidence for natural transmission of small-ruminant lentiviruses of subtype A4 from goats to sheep and vice versa. . J Virol 78:, 7518–7522. [CrossRef][PubMed]
    [Google Scholar]
  42. Singh I., McConnell I., Blacklaws B.. ( 2006;). Immune response to individual maedi-visna virus gag antigens. . J Virol 80:, 912–919. [CrossRef][PubMed]
    [Google Scholar]
  43. Staskus K. A., Couch L., Bitterman P., Retzel E. F., Zupancic M., List J., Haase A. T.. ( 1991;). In situ amplification of visna virus DNA in tissue sections reveals a reservoir of latently infected cells. . Microb Pathog 11:, 67–76. [CrossRef][PubMed]
    [Google Scholar]
  44. Torfason E. G., Gudnadóttir M., Löve A.. ( 1992;). Comparison of immunoblots with neutralizing and complement fixing antibodies in experimental and natural cases of visna-maedi. . Arch Virol 123:, 47–58. [CrossRef][PubMed]
    [Google Scholar]
  45. Torsteinsdóttir S., Matthíasdóttir S., Vidarsdóttir N., Svansson V., Pétursson G.. ( 2003;). Intratracheal inoculation as an efficient route of experimental infection with maedi-visna virus. . Res Vet Sci 75:, 245–247. [CrossRef][PubMed]
    [Google Scholar]
  46. Torsteinsdottir S., Andresdottir V., Arnarson H., Petursson G.. ( 2007;). Immune response to maedi-visna virus. . Front Biosci 12:, 1532–1543. [CrossRef][PubMed]
    [Google Scholar]
  47. Verhofstede C., Reniers S., Van Wanzeele F., Plum J.. ( 1994;). Evaluation of proviral copy number and plasma RNA level as early indicators of progression in HIV-1 infection: correlation with virological and immunological markers of disease. . AIDS 8:, 1421–1427. [CrossRef][PubMed]
    [Google Scholar]
  48. Vigne R., Barban V., Quérat G., Mazarin V., Gourdou I., Sauze N.. ( 1987;). Transcription of visna virus during its lytic cycle: evidence for a sequential early and late gene expression. . Virology 161:, 218–227. [CrossRef][PubMed]
    [Google Scholar]
  49. Zanoni R. G.. ( 1998;). Phylogenetic analysis of small ruminant lentiviruses. . J Gen Virol 79:, 1951–1961.[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.044768-0
Loading
/content/journal/jgv/10.1099/vir.0.044768-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error