1887

Abstract

In this study, the Japanese strain of type I feline infectious peritonitis virus (FIPV), C3663, was found to have a large deletion of 735 bp within the gene encoding the spike (S) protein, with a deduced loss of 245 aa of the N-terminal region of the S protein. This deletion is similar to that observed in porcine respiratory coronavirus (PRCoV) when compared to transmissible gastroenteritis virus, which correlates with reduced virulence. By analogy to PRCoV, we expected that the pathogenicity of C3663 may be attenuated in cats. However, two of four cats inoculated with C3663 died of FIP, and a third C3663-inoculated cat showed FIP lesions at 91 days after challenge. These results indicate that the 5′-terminal region of the S gene is not essential for the development of FIP.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.043992-0
2012-09-01
2024-12-03
Loading full text...

Full text loading...

/deliver/fulltext/jgv/93/9/1930.html?itemId=/content/journal/jgv/10.1099/vir.0.043992-0&mimeType=html&fmt=ahah

References

  1. Christianson K. K., Ingersoll J. D., Landon R. M., Pfeiffer N. E., Gerber J. D. 1989; Characterization of a temperature sensitive feline infectious peritonitis coronavirus. Arch Virol 109:185–196 [View Article][PubMed]
    [Google Scholar]
  2. Cox E., Pensaert M. B., Callebaut P., van Deun K. 1990; Intestinal replication of a porcine respiratory coronavirus closely related antigenically to the enteric transmissible gastroenteritis virus. Vet Microbiol 23:237–243 [View Article][PubMed]
    [Google Scholar]
  3. Fiscus S. A., Teramoto Y. A. 1987; Antigenic comparison of feline coronavirus isolates: evidence for markedly different peplomer glycoproteins. J Virol 61:2607–2613[PubMed]
    [Google Scholar]
  4. Hayashi T., Yanai T., Tsurudome M., Nakayama H., Watabe Y., Fujiwara K. 1981; Serodiagnosis for feline infectious peritonitis by immunofluorescence using infected suckling mouse brain sections. Nippon Juigaku Zasshi 43:669–676 [View Article][PubMed]
    [Google Scholar]
  5. Herrewegh A. A., Smeenk I., Horzinek M. C., Rottier P. J., de Groot R. J. 1998; Feline coronavirus type II strains 79-1683 and 79-1146 originate from a double recombination between feline coronavirus type I and canine coronavirus. J Virol 72:4508–4514[PubMed]
    [Google Scholar]
  6. Hohdatsu T., Okada S., Koyama H. 1991a; Characterization of monoclonal antibodies against feline infectious peritonitis virus type II and antigenic relationship between feline, porcine, and canine coronaviruses. Arch Virol 117:85–95 [View Article][PubMed]
    [Google Scholar]
  7. Hohdatsu T., Sasamoto T., Okada S., Koyama H. 1991b; Antigenic analysis of feline coronaviruses with monoclonal antibodies (MAbs): preparation of MAbs which discriminate between FIPV strain 79-1146 and FECV strain 79-1683. Vet Microbiol 28:13–24 [View Article][PubMed]
    [Google Scholar]
  8. Hohdatsu T., Okada S., Ishizuka Y., Yamada H., Koyama H. 1992; The prevalence of types I and II feline coronavirus infections in cats. J Vet Med Sci 54:557–562 [View Article][PubMed]
    [Google Scholar]
  9. Jacobse-Geels H. E., Horzinek M. C. 1983; Expression of feline infectious peritonitis coronavirus antigens on the surface of feline macrophage-like cells. J Gen Virol 64:1859–1866 [View Article][PubMed]
    [Google Scholar]
  10. Kennedy M., Boedeker N., Gibbs P., Kania S. 2001; Deletions in the 7a ORF of feline coronavirus associated with an epidemic of feline infectious peritonitis. Vet Microbiol 81:227–234 [View Article][PubMed]
    [Google Scholar]
  11. Kiss I., Poland A. M., Pedersen N. C. 2004; Disease outcome and cytokine responses in cats immunized with an avirulent feline infectious peritonitis virus (FIPV)-UCD1 and challenge-exposed with virulent FIPV-UCD8. J Feline Med Surg 6:89–97 [View Article][PubMed]
    [Google Scholar]
  12. Mochizuki M., Mitsutake Y., Miyanohara Y., Higashihara T., Shimizu T., Hohdatsu T. 1997; Antigenic and plaque variations of serotype II feline infectious peritonitis coronaviruses. J Vet Med Sci 59:253–258 [View Article][PubMed]
    [Google Scholar]
  13. Motokawa K., Hohdatsu T., Hashimoto H., Koyama H. 1996; Comparison of the amino acid sequence and phylogenetic analysis of the peplomer, integral membrane and nucleocapsid proteins of feline, canine and porcine coronaviruses. Microbiol Immunol 40:425–433[PubMed] [CrossRef]
    [Google Scholar]
  14. Pedersen N. C. 1987; Virologic and immunologic aspects of feline infectious peritonitis virus infection. Adv Exp Med Biol 218:529–550 [View Article][PubMed]
    [Google Scholar]
  15. Pedersen N. C., Black J. W. 1983; Attempted immunization of cats against feline infectious peritonitis, using avirulent live virus or sublethal amounts of virulent virus. Am J Vet Res 44:229–234[PubMed]
    [Google Scholar]
  16. Pedersen N. C., Floyd K. 1985; Experimental studies with three new strains of feline infectious peritonitis virus FIPV-UCD2, FIPV-UCD3, and FIPV-UCD4. Compend Contin Educ Pract Vet 7:1001–1011
    [Google Scholar]
  17. Pedersen N. C., Boyle J. F., Floyd K., Fudge A., Barker J. 1981; An enteric coronavirus infection of cats and its relationship to feline infectious peritonitis. Am J Vet Res 42:368–377[PubMed]
    [Google Scholar]
  18. Pedersen N. C., Black J. W., Boyle J. F., Evermann J. F., McKeirnan A. J., Ott R. L. 1984; Pathogenic differences between various feline coronavirus isolates. Adv Exp Med Biol 173:365–380[PubMed]
    [Google Scholar]
  19. Schultze B., Krempl C., Ballesteros M. L., Shaw L., Schauer R., Enjuanes L., Herrler G. 1996; Transmissible gastroenteritis coronavirus, but not the related porcine respiratory coronavirus, has a sialic acid (N-glycolylneuraminic acid) binding activity. J Virol 70:5634–5637[PubMed]
    [Google Scholar]
  20. Shiba N., Maeda K., Kato H., Mochizuki M., Iwata H. 2007; Differentiation of feline coronavirus type I and II infections by virus neutralization test. Vet Microbiol 124:348–352 [View Article][PubMed]
    [Google Scholar]
  21. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. 2011; mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739 [View Article][PubMed]
    [Google Scholar]
  22. Wesley R. D., Woods R. D., Cheung A. K. 1991; Genetic analysis of porcine respiratory coronavirus, an attenuated variant of transmissible gastroenteritis virus. J Virol 65:3369–3373[PubMed]
    [Google Scholar]
/content/journal/jgv/10.1099/vir.0.043992-0
Loading
/content/journal/jgv/10.1099/vir.0.043992-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error