1887

Abstract

Foot-and-mouth disease (FMD) is a highly contagious and economically devastating disease of cloven-hoofed animals with an almost-worldwide distribution. Conventional FMD vaccines consisting of chemically inactivated viruses have aided in the eradication of FMD from Europe and remain the main tool for control in endemic countries. Although significant steps have been made to improve the quality of vaccines, such as improved methods of antigen concentration and purification, manufacturing processes are technically demanding and expensive. Consequently, there is large variation in the quality of vaccines distributed in FMD-endemic countries compared with those manufactured for emergency use in FMD-free countries. Here, we have used reverse genetics to introduce haemagglutinin (HA) and FLAG tags into the foot-and-mouth disease virus (FMDV) capsid. HA- and FLAG-tagged FMDVs were infectious, with a plaque morphology similar to the non-tagged parental infectious copy virus and the field virus. The tagged viruses utilized integrin-mediated cell entry and retained the tag epitopes over serial passages. In addition, infectious HA- and FLAG-tagged FMDVs were readily purified from small-scale cultures using commercial antibodies. Tagged FMDV offers a feasible alternative to the current methods of vaccine concentration and purification, a potential to develop FMD vaccine conjugates and a unique tool for FMDV research.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.043521-0
2012-11-01
2019-12-15
Loading full text...

Full text loading...

/deliver/fulltext/jgv/93/11/2371.html?itemId=/content/journal/jgv/10.1099/vir.0.043521-0&mimeType=html&fmt=ahah

References

  1. Acharya R. , Fry E. , Stuart D. , Fox G. , Rowlands D. , Brown F. . ( 1989; ). The three-dimensional structure of foot-and-mouth disease virus at 2.9 Å resolution. . Nature 337:, 709–716. [CrossRef] [PubMed]
    [Google Scholar]
  2. Baranowski E. , Ruiz-Jarabo C. M. , Lim F. , Domingo E. . ( 2001; ). Foot-and-mouth disease virus lacking the VP1 G-H loop: the mutant spectrum uncovers interactions among antigenic sites for fitness gain. . Virology 288:, 192–202. [CrossRef] [PubMed]
    [Google Scholar]
  3. Beach N. M. , Smith S. M. , Ramamoorthy S. , Meng X. J. . ( 2011; ). Chimeric porcine circoviruses (PCV) containing amino acid epitope tags in the C terminus of the capsid gene are infectious and elicit both anti-epitope tag antibodies and anti-PCV type 2 neutralizing antibodies in pigs. . J Virol 85:, 4591–4595. [CrossRef] [PubMed]
    [Google Scholar]
  4. Bonifaz L. C. , Bonnyay D. P. , Charalambous A. , Darguste D. I. , Fujii S. , Soares H. , Brimnes M. K. , Moltedo B. , Moran T. M. , Steinman R. M. . ( 2004; ). In vivo targeting of antigens to maturing dendritic cells via the DEC-205 receptor improves T cell vaccination. . J Exp Med 199:, 815–824. [CrossRef] [PubMed]
    [Google Scholar]
  5. Bøtner A. , Kakker N. K. , Barbezange C. , Berryman S. , Jackson T. , Belsham G. J. . ( 2011; ). Capsid proteins from field strains of foot-and-mouth disease virus confer a pathogenic phenotype in cattle on an attenuated, cell-culture-adapted virus. . J Gen Virol 92:, 1141–1151. [CrossRef] [PubMed]
    [Google Scholar]
  6. Brehm K. E. , Ferris N. P. , Lenk M. , Riebe R. , Haas B. . ( 2009; ). Highly sensitive fetal goat tongue cell line for detection and isolation of foot-and-mouth disease virus. . J Clin Microbiol 47:, 3156–3160. [CrossRef] [PubMed]
    [Google Scholar]
  7. Brochu-Lafontaine V. , Lemay G. . ( 2012; ). Addition of exogenous polypeptides on the mammalian reovirus outer capsid using reverse genetics. . J Virol Methods 179:, 342–350. [CrossRef] [PubMed]
    [Google Scholar]
  8. Burman A. , Clark S. , Abrescia N. G. , Fry E. E. , Stuart D. I. , Jackson T. . ( 2006; ). Specificity of the VP1 GH loop of foot-and-mouth disease virus for αv integrins. . J Virol 80:, 9798–9810. [CrossRef] [PubMed]
    [Google Scholar]
  9. Carr B. V. , LeFevre E. A. , Barnett P. V. , Prentice H. , Charleston B. . ( 2008; ). CD4+ T cell responses to foot and mouth disease virus (FMDV) in vaccinated cattle. In The Global Control of FMD: Tools, Ideas and Ideals, Erice, Sicily, 14–17 October 2008. http://www.fao.org/ag/againfo/commissions/docs/research_group/erice/44_poster.pdf
  10. Cox S. J. , Barnett P. V. . ( 2009; ). Experimental evaluation of foot-and-mouth disease vaccines for emergency use in ruminants and pigs: a review. . Vet Res 40:, 13. [CrossRef] [PubMed]
    [Google Scholar]
  11. Curry S. , Fry E. , Blakemore W. , Abu-Ghazaleh R. , Jackson T. , King A. , Lea S. , Newman J. , Rowlands D. , Stuart D. . ( 1996; ). Perturbations in the surface structure of A22 Iraq foot-and-mouth disease virus accompanying coupled changes in host cell specificity and antigenicity. . Structure 4:, 135–145. [CrossRef] [PubMed]
    [Google Scholar]
  12. De Diego M. , Brocchi E. , Mackay D. , De Simone F. . ( 1997; ). The non-structural polyprotein 3ABC of foot-and-mouth disease virus as a diagnostic antigen in ELISA to differentiate infected from vaccinated cattle. . Arch Virol 142:, 2021–2033. [CrossRef] [PubMed]
    [Google Scholar]
  13. Dicara D. , Burman A. , Clark S. , Berryman S. , Howard M. J. , Hart I. R. , Marshall J. F. , Jackson T. . ( 2008; ). Foot-and-mouth disease virus forms a highly stable, EDTA-resistant complex with its principal receptor, integrin αvβ6: implications for infectiousness. . J Virol 82:, 1537–1546. [CrossRef] [PubMed]
    [Google Scholar]
  14. Doel T. R. . ( 2003; ). FMD vaccines. . Virus Res 91:, 81–99. [CrossRef] [PubMed]
    [Google Scholar]
  15. Doel T. R. , Pullen L. . ( 1990; ). International bank for foot-and-mouth disease vaccine: stability studies with virus concentrates and vaccines prepared from them. . Vaccine 8:, 473–478. [CrossRef] [PubMed]
    [Google Scholar]
  16. Einhauer A. , Jungbauer A. . ( 2001; ). The FLAG peptide, a versatile fusion tag for the purification of recombinant proteins. . J Biochem Biophys Methods 49:, 455–465. [CrossRef] [PubMed]
    [Google Scholar]
  17. Ellard F. M. , Drew J. , Blakemore W. E. , Stuart D. I. , King A. M. . ( 1999; ). Evidence for the role of His-142 of protein 1C in the acid-induced disassembly of foot-and-mouth disease virus capsids. . J Gen Virol 80:, 1911–1918.[PubMed]
    [Google Scholar]
  18. Ferris N. P. , Abrescia N. G. , Stuart D. I. , Jackson T. , Burman A. , King D. P. , Paton D. J. . ( 2005; ). Utility of recombinant integrin αvβ6 as a capture reagent in immunoassays for the diagnosis of foot-and-mouth disease. . J Virol Methods 127:, 69–79. [CrossRef] [PubMed]
    [Google Scholar]
  19. Forss S. , Strebel K. , Beck E. , Schaller H. . ( 1984; ). Nucleotide sequence and genome organization of foot-and-mouth disease virus. . Nucleic Acids Res 12:, 6587–6601. [CrossRef] [PubMed]
    [Google Scholar]
  20. Griffith B. P. , Garner R. B. , Chacko T. M. . ( 1995; ). Stability of free and complexed human immunodeficiency virus type 1 antigen at 4 degrees C and at room temperature. . J Clin Microbiol 33:, 1348–1350.[PubMed]
    [Google Scholar]
  21. Harmsen M. M. , van Solt C. B. , Fijten H. P. , van Keulen L. , Rosalia R. A. , Weerdmeester K. , Cornelissen A. H. , De Bruin M. G. , Eblé P. L. , Dekker A. . ( 2007; ). Passive immunization of guinea pigs with llama single-domain antibody fragments against foot-and-mouth disease. . Vet Microbiol 120:, 193–206. [CrossRef] [PubMed]
    [Google Scholar]
  22. Hogle J. M. , Chow M. , Filman D. J. . ( 1985; ). Three-dimensional structure of poliovirus at 2.9 Å resolution. . Science 229:, 1358–1365. [CrossRef] [PubMed]
    [Google Scholar]
  23. Holinka L. G. , Fernandez-Sainz I. , O’Donnell V. , Prarat M. V. , Gladue D. P. , Lu Z. , Risatti G. R. , Borca M. V. . ( 2009; ). Development of a live attenuated antigenic marker classical swine fever vaccine. . Virology 384:, 106–113. [CrossRef] [PubMed]
    [Google Scholar]
  24. Jackson T. , Sheppard D. , Denyer M. , Blakemore W. , King A. M. . ( 2000; ). The epithelial integrin αvβ6 is a receptor for foot-and-mouth disease virus. . J Virol 74:, 4949–4956. [CrossRef] [PubMed]
    [Google Scholar]
  25. Juleff N. , Windsor M. , Reid E. , Seago J. , Zhang Z. , Monaghan P. , Morrison I. W. , Charleston B. . ( 2008; ). Foot-and-mouth disease virus persists in the light zone of germinal centres. . PLoS ONE 3:, e3434. [CrossRef] [PubMed]
    [Google Scholar]
  26. Lea S. , Hernández J. , Blakemore W. , Brocchi E. , Curry S. , Domingo E. , Fry E. , Abu-Ghazaleh R. , King A. . & other authors ( 1994; ). The structure and antigenicity of a type C foot-and-mouth disease virus. . Structure 2:, 123–139. [CrossRef] [PubMed]
    [Google Scholar]
  27. Lea S. , Abu-Ghazaleh R. , Blakemore W. , Curry S. , Fry E. , Jackson T. , King A. , Logan D. , Newman J. , Stuart D. . ( 1995; ). Structural comparison of two strains of foot-and-mouth disease virus subtype O1 and a laboratory antigenic variant, G67. . Structure 3:, 571–580. [CrossRef] [PubMed]
    [Google Scholar]
  28. Logan D. , Abu-Ghazaleh R. , Blakemore W. , Curry S. , Jackson T. , King A. , Lea S. , Lewis R. , Newman J. . & other authors ( 1993; ). Structure of a major immunogenic site on foot-and-mouth disease virus. . Nature 362:, 566–568. [CrossRef] [PubMed]
    [Google Scholar]
  29. Lubroth J. , López A. , Ramalho A. K. , Meyer R. F. , Brown F. , Darsie G. C. . ( 1998; ). Cattle response to foot-and-mouth disease virus nonstructural proteins as antigens within vaccines produced using different concentrations. . Vet Q 20: (Suppl. 2), S13–S17. [CrossRef] [PubMed]
    [Google Scholar]
  30. Mackay D. K. . ( 1998; ). Differentiating infection from vaccination in foot-and-mouth disease. . Vet Q 20: (Suppl. 2), S2–S5. [CrossRef] [PubMed]
    [Google Scholar]
  31. McCahon D. , Crowther J. R. , Belsham G. J. , Kitson J. D. , Duchesne M. , Have P. , Meloen R. H. , Morgan D. O. , De Simone F. . ( 1989; ). Evidence for at least four antigenic sites on type O foot-and-mouth disease virus involved in neutralization; identification by single and multiple site monoclonal antibody-resistant mutants. . J Gen Virol 70:, 639–645. [CrossRef] [PubMed]
    [Google Scholar]
  32. Merz A. , Long G. , Hiet M. S. , Brügger B. , Chlanda P. , Andre P. , Wieland F. , Krijnse-Locker J. , Bartenschlager R. . ( 2011; ). Biochemical and morphological properties of hepatitis C virus particles and determination of their lipidome. . J Biol Chem 286:, 3018–3032. [CrossRef] [PubMed]
    [Google Scholar]
  33. Ochsenbein A. F. , Pinschewer D. D. , Sierro S. , Horvath E. , Hengartner H. , Zinkernagel R. M. . ( 2000; ). Protective long-term antibody memory by antigen-driven and T help-dependent differentiation of long-lived memory B cells to short-lived plasma cells independent of secondary lymphoid organs. . Proc Natl Acad Sci U S A 97:, 13263–13268. [CrossRef] [PubMed]
    [Google Scholar]
  34. Parry N. , Fox G. , Rowlands D. , Brown F. , Fry E. , Acharya R. , Logan D. , Stuart D. . ( 1990; ). Structural and serological evidence for a novel mechanism of antigenic variation in foot-and-mouth disease virus. . Nature 347:, 569–572. [CrossRef] [PubMed]
    [Google Scholar]
  35. Paton D. J. , Taylor G. . ( 2011; ). Developing vaccines against foot-and-mouth disease and some other exotic viral diseases of livestock. . Philos Trans R Soc Lond B Biol Sci 366:, 2774–2781. [CrossRef] [PubMed]
    [Google Scholar]
  36. Prentoe J. , Bukh J. . ( 2011; ). Hepatitis C virus expressing flag-tagged envelope protein 2 has unaltered infectivity and density, is specifically neutralized by flag antibodies and can be purified by affinity chromatography. . Virology 409:, 148–155. [CrossRef] [PubMed]
    [Google Scholar]
  37. Robinson L. , Windsor M. , Hope J. , MacPherson G. , Charleston B. . ( 2011; ). Frenkel Lecture: FMD vaccine development – past and future. In The Global Control of FMD: Tools, Ideas and Ideals, Erice, Sicily, 14–17 October 2008. http://www.fao.org/ag/againfo/commissions/docs/research_group/erice/APPENDIX_23.pdf
  38. Robinson L. , Windsor M. , McLaughlin K. , Hope J. , Jackson T. , Charleston B. . ( 2011; ). Foot-and-mouth disease virus exhibits an altered tropism in the presence of specific immunoglobulins, enabling productive infection and killing of dendritic cells. . J Virol 85:, 2212–2223. [CrossRef] [PubMed]
    [Google Scholar]
  39. Rodriguez L. L. , Grubman M. J. . ( 2009; ). Foot and mouth disease virus vaccines. . Vaccine 27: (Suppl. 4), D90–D94. [CrossRef] [PubMed]
    [Google Scholar]
  40. Soares H. , Waechter H. , Glaichenhaus N. , Mougneau E. , Yagita H. , Mizenina O. , Dudziak D. , Nussenzweig M. C. , Steinman R. M. . ( 2007; ). A subset of dendritic cells induces CD4+ T cells to produce IFN-γ by an IL-12-independent but CD70-dependent mechanism in vivo. . J Exp Med 204:, 1095–1106. [CrossRef] [PubMed]
    [Google Scholar]
  41. Ueno H. , Klechevsky E. , Schmitt N. , Ni L. , Flamar A. L. , Zurawski S. , Zurawski G. , Palucka K. , Banchereau J. , Oh S. . ( 2011; ). Targeting human dendritic cell subsets for improved vaccines. . Semin Immunol 23:, 21–27. [CrossRef] [PubMed]
    [Google Scholar]
  42. Uttenthal A. , Parida S. , Rasmussen T. B. , Paton D. J. , Haas B. , Dundon W. G. . ( 2010; ). Strategies for differentiating infection in vaccinated animals (DIVA) for foot-and-mouth disease, classical swine fever and avian influenza. . Expert Rev Vaccines 9:, 73–87. [CrossRef] [PubMed]
    [Google Scholar]
  43. van Duin D. , Medzhitov R. , Shaw A. C. . ( 2006; ). Triggering TLR signaling in vaccination. . Trends Immunol 27:, 49–55. [CrossRef] [PubMed]
    [Google Scholar]
  44. Van Maanen C. , Terpstra C. . ( 1990; ). Quantification of intact 146S foot-and-mouth disease antigen for vaccine production by a double antibody sandwich ELISA using monoclonal antibodies. . Biologicals 18:, 315–319. [CrossRef] [PubMed]
    [Google Scholar]
  45. Wang H. , Xue M. , Yang D. , Zhou G. , Wu D. , Yu L. . ( 2012; ). Insertion of type O-conserved neutralizing epitope into the foot-and-mouth disease virus type Asia1 VP1 G-H loop: effect on viral replication and neutralization phenotype. . J Gen Virol 93:, 1442–-1448.[CrossRef]
    [Google Scholar]
  46. Wegelt A. , Reimann I. , Granzow H. , Beer M. . ( 2011; ). Characterization and purification of recombinant bovine viral diarrhea virus particles with epitope-tagged envelope proteins. . J Gen Virol 92:, 1352–1357. [CrossRef] [PubMed]
    [Google Scholar]
  47. Zibert A. , Maass G. , Strebel K. , Falk M. M. , Beck E. . ( 1990; ). Infectious foot-and-mouth disease virus derived from a cloned full-length cDNA. . J Virol 64:, 2467–2473.[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.043521-0
Loading
/content/journal/jgv/10.1099/vir.0.043521-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error