1887

Abstract

Marek’s disease virus serotype 1 (MDV-1) is an oncogenic alphaherpesvirus causing fatal T-cell lymphoma in chickens. MDV latency is characterized by the production of latency-associated transcripts (LATs), a family of non-protein-coding spliced RNAs. A cluster of four microRNAs (cluster mdv1-miR-M8-M10) was identified, but not formally mapped, at the predicted LAT 5′ end. We established a LAT cDNA library from latently MDV-infected cell line MSB-1. We identified 22 highly variable LATs, which were due to the extensive alternative splicing of a total of 14 introns. RACE PCR confirmed the predicted 3′ end and allowed identification of the 5′ end, 400 nt upstream of the previously predicted LAT end. The LATs share their transcription start site with the microRNA-expressing transcript described previously, localizing the microRNAs to the first LAT intron and identifying the LATs as the primary transcripts of the microRNAs. We identified MDV immediate-early (IE) genes and as putative targets of mdv1-miR-M7-5p, the third microRNA of the cluster mdv1-miR-M8-M10. Endogenously expressed mdv1-miR-M7-5p in MSB-1 cells reduced luciferase activity significantly when microRNA-responsive elements from or were cloned in the 3′ UTR of the firefly luciferase gene. ICP27 protein levels were decreased by 70 % when the mdv1-miR-M7-5p precursor was co-expressed with an expression plasmid. Additionally, we showed a negative correlation between the decreased expression of mdv1-miR-M7-5p and an increase in ICP27 expression during virus reactivation. Our results suggest that, by targeting two IE genes, MDV microRNAs produced from LAT transcripts may contribute to establish and/or maintain latency.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.043109-0
2012-08-01
2020-07-07
Loading full text...

Full text loading...

/deliver/fulltext/jgv/93/8/1731.html?itemId=/content/journal/jgv/10.1099/vir.0.043109-0&mimeType=html&fmt=ahah

References

  1. Akiyama Y., Kato S., Iwa N.. 1973; Continuous cell culture from lymphoma of Marek’s disease. Biken J16:177–179[PubMed]
    [Google Scholar]
  2. Amor S., Strassheim S., Dambrine G., Remy S., Rasschaert D., Laurent S.. 2011; ICP27 protein of Marek’s disease virus interacts with SR proteins and inhibits the splicing of cellular telomerase chTERT and viral vIL8 transcripts. J Gen Virol92:1273–1278 [CrossRef][PubMed]
    [Google Scholar]
  3. Anselmo A., Flori L., Jaffrezic F., Rutigliano T., Cecere M., Cortes-Perez N., Lefèvre F., Rogel-Gaillard C., Giuffra E.. 2011; Co-expression of host and viral microRNAs in porcine dendritic cells infected by the pseudorabies virus. PLoS ONE6:e17374 [CrossRef][PubMed]
    [Google Scholar]
  4. Baigent S. J., Davison F.. 2004; Marek’s disease virus: biology and life cycle. In Marek’s Disease: an Evolving Problem pp.62–77 Edited by Davison F., Nair V.. Oxford: Elsevier Academic Press; [CrossRef]
    [Google Scholar]
  5. Bellare P., Ganem D.. 2009; Regulation of KSHV lytic switch protein expression by a virus-encoded microRNA: an evolutionary adaptation that fine-tunes lytic reactivation. Cell Host Microbe6:570–575 [CrossRef][PubMed]
    [Google Scholar]
  6. Boss I. W., Plaisance K. B., Renne R.. 2009; Role of virus-encoded microRNAs in herpesvirus biology. Trends Microbiol17:544–553 [CrossRef][PubMed]
    [Google Scholar]
  7. Burnside J., Morgan R. W.. 2007; Genomics and Marek’s disease virus. Cytogenet Genome Res117:376–387 [CrossRef][PubMed]
    [Google Scholar]
  8. Burnside J., Bernberg E., Anderson A., Lu C., Meyers B. C., Green P. J., Jain N., Isaacs G., Morgan R. W.. 2006; Marek’s disease virus encodes microRNAs that map to meq and the latency-associated transcript. J Virol80:8778–8786 [CrossRef][PubMed]
    [Google Scholar]
  9. Cai X., Cullen B. R.. 2006; Transcriptional origin of Kaposi’s sarcoma-associated herpesvirus microRNAs. J Virol80:2234–2242 [CrossRef][PubMed]
    [Google Scholar]
  10. Cai X., Lu S., Zhang Z., Gonzalez C. M., Damania B., Cullen B. R.. 2005; Kaposi’s sarcoma-associated herpesvirus expresses an array of viral microRNAs in latently infected cells. Proc Natl Acad Sci U S A102:5570–5575 [CrossRef][PubMed]
    [Google Scholar]
  11. Cantello J. L., Anderson A. S., Morgan R. W.. 1994; Identification of latency-associated transcripts that map antisense to the ICP4 homolog gene of Marek’s disease virus. J Virol68:6280–6290[PubMed]
    [Google Scholar]
  12. Cantello J. L., Parcells M. S., Anderson A. S., Morgan R. W.. 1997; Marek’s disease virus latency-associated transcripts belong to a family of spliced RNAs that are antisense to the ICP4 homolog gene. J Virol71:1353–1361[PubMed]
    [Google Scholar]
  13. Chi S. W., Zang J. B., Mele A., Darnell R. B.. 2009; Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature460:479–486[PubMed]
    [Google Scholar]
  14. Cui C., Griffiths A., Li G., Silva L. M., Kramer M. F., Gaasterland T., Wang X. J., Coen D. M.. 2006; Prediction and identification of herpes simplex virus 1-encoded microRNAs. J Virol80:5499–5508 [CrossRef][PubMed]
    [Google Scholar]
  15. Fragnet L., Kut E., Rasschaert D.. 2005; Comparative functional study of the viral telomerase RNA based on natural mutations. J Biol Chem280:23502–23515 [CrossRef][PubMed]
    [Google Scholar]
  16. Grey F., Meyers H., White E. A., Spector D. H., Nelson J.. 2007; A human cytomegalovirus-encoded microRNA regulates expression of multiple viral genes involved in replication. PLoS Pathog3:e163 [CrossRef][PubMed]
    [Google Scholar]
  17. Grundhoff A., Sullivan C. S., Ganem D.. 2006; A combined computational and microarray-based approach identifies novel microRNAs encoded by human gamma-herpesviruses. RNA12:733–750 [CrossRef][PubMed]
    [Google Scholar]
  18. Iizasa H., Wulff B. E., Alla N. R., Maragkakis M., Megraw M., Hatzigeorgiou A., Iwakiri D., Takada K., Wiedmer A..other authors 2010; Editing of Epstein–Barr virus-encoded BART6 microRNAs controls their Dicer targeting and consequently affects viral latency. J Biol Chem285:33358–33370 [CrossRef][PubMed]
    [Google Scholar]
  19. Jurak I., Kramer M. F., Mellor J. C., van Lint A. L., Roth F. P., Knipe D. M., Coen D. M.. 2010; Numerous conserved and divergent microRNAs expressed by herpes simplex viruses 1 and 2. J Virol84:4659–4672 [CrossRef][PubMed]
    [Google Scholar]
  20. Kato K., Izumiya Y., Tohya Y., Takahashi E., Hirai K., Kawaguchi Y.. 2002; Identification and characterization of Marek’s disease virus serotype 1 (MDV1) ICP22 gene product: MDV1 ICP22 transactivates the MDV1 ICP27 promoter synergistically with MDV1 ICP4. Vet Microbiol85:305–313 [CrossRef][PubMed]
    [Google Scholar]
  21. Kim Y. K., Kim V. N.. 2007; Processing of intronic microRNAs. EMBO J26:775–783 [CrossRef][PubMed]
    [Google Scholar]
  22. Krol J., Loedige I., Filipowicz W.. 2010; The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet11:597–610[PubMed]
    [Google Scholar]
  23. Lagos-Quintana M., Rauhut R., Lendeckel W., Tuschl T.. 2001; Identification of novel genes coding for small expressed RNAs. Science294:853–858 [CrossRef][PubMed]
    [Google Scholar]
  24. Li D. S., Pastorek J., Zelník V., Smith G. D., Ross L. J.. 1994; Identification of novel transcripts complementary to the Marek’s disease virus homologue of the ICP4 gene of herpes simplex virus. J Gen Virol75:1713–1722 [CrossRef][PubMed]
    [Google Scholar]
  25. Li D., O’Sullivan G., Greenall L., Smith G., Jiang C., Ross N.. 1998; Further characterization of the latency-associated transcription unit of Marek’s disease virus. Arch Virol143:295–311 [CrossRef][PubMed]
    [Google Scholar]
  26. Lin H. R., Ganem D.. 2011; Viral microRNA target allows insight into the role of translation in governing microRNA target accessibility. Proc Natl Acad Sci U S A108:5148–5153 [CrossRef][PubMed]
    [Google Scholar]
  27. Lu C. C., Li Z., Chu C. Y., Feng J., Feng J., Sun R., Rana T. M.. 2010; MicroRNAs encoded by Kaposi’s sarcoma-associated herpesvirus regulate viral life cycle. EMBO Rep11:784–790 [CrossRef][PubMed]
    [Google Scholar]
  28. McKie E. A., Ubukata E., Hasegawa S., Zhang S., Nonoyama M., Tanaka A.. 1995; The transcripts from the sequences flanking the short component of Marek’s disease virus during latent infection form a unique family of 3′-coterminal RNAs. J Virol69:1310–1314[PubMed]
    [Google Scholar]
  29. Murphy E., Vanícek J., Robins H., Shenk T., Levine A. J.. 2008; Suppression of immediate-early viral gene expression by herpesvirus-coded microRNAs: implications for latency. Proc Natl Acad Sci U S A105:5453–5458 [CrossRef][PubMed]
    [Google Scholar]
  30. Muylkens B., Coupeau D., Dambrine G., Trapp S., Rasschaert D.. 2010; Marek’s disease virus microRNA designated Mdv1-pre-miR-M4 targets both cellular and viral genes. Arch Virol155:1823–1837 [CrossRef][PubMed]
    [Google Scholar]
  31. Olena A. F., Patton J. G.. 2010; Genomic organization of microRNAs. J Cell Physiol222:540–545[PubMed]
    [Google Scholar]
  32. Petherbridge L., Brown A. C., Baigent S. J., Howes K., Sacco M. A., Osterrieder N., Nair V. K.. 2004; Oncogenicity of virulent Marek’s disease virus cloned as bacterial artificial chromosomes. J Virol78:13376–13380 [CrossRef][PubMed]
    [Google Scholar]
  33. Pfeffer S., Zavolan M., Grässer F. A., Chien M., Russo J. J., Ju J., John B., Enright A. J., Marks D..other authors 2004; Identification of virus-encoded microRNAs. Science304:734–736 [CrossRef][PubMed]
    [Google Scholar]
  34. Pfeffer S., Sewer A., Lagos-Quintana M., Sheridan R., Sander C., Grässer F. A., van Dyk L. F., Ho C. K., Shuman S..other authors 2005; Identification of microRNAs of the herpesvirus family. Nat Methods2:269–276 [CrossRef][PubMed]
    [Google Scholar]
  35. Pratt W. D., Cantello J., Morgan R. W., Schat K. A.. 1994; Enhanced expression of the Marek’s disease virus-specific phosphoproteins after stable transfection of MSB-1 cells with the Marek’s disease virus homologue of ICP4. Virology201:132–136 [CrossRef][PubMed]
    [Google Scholar]
  36. Preston K. J., Garland A. J.. 1979; In vivo and in vitro studies on temperature-sensitive mutants of swine vesicular disease virus. J Hyg (Lond)83:319–330 [CrossRef][PubMed]
    [Google Scholar]
  37. Raymond C. K., Roberts B. S., Garrett-Engele P., Lim L. P., Johnson J. M.. 2005; Simple, quantitative primer-extension PCR assay for direct monitoring of microRNAs and short-interfering RNAs. RNA11:1737–1744 [CrossRef][PubMed]
    [Google Scholar]
  38. Schat K. A., Nair V.. 2008; Marek’s disease. In Diseases of Poultry pp.452–514 Edited by Saif Y. M.. Oxford: Wiley-Blackwell;
    [Google Scholar]
  39. Smith R. W., Malik P., Clements J. B.. 2005; The herpes simplex virus ICP27 protein: a multifunctional post-transcriptional regulator of gene expression. Biochem Soc Trans33:499–501 [CrossRef][PubMed]
    [Google Scholar]
  40. Stik G., Laurent S., Coupeau D., Coutaud B., Dambrine G., Rasschaert D., Muylkens B.. 2010; A p53-dependent promoter associated with polymorphic tandem repeats controls the expression of a viral transcript encoding clustered microRNAs. RNA16:2263–2276 [CrossRef][PubMed]
    [Google Scholar]
  41. Sullivan C. S., Grundhoff A. T., Tevethia S., Pipas J. M., Ganem D.. 2005; SV40-encoded microRNAs regulate viral gene expression and reduce susceptibility to cytotoxic T cells. Nature435:682–686 [CrossRef][PubMed]
    [Google Scholar]
  42. Tang S., Patel A., Krause P. R.. 2009; Novel less-abundant viral microRNAs encoded by herpes simplex virus 2 latency-associated transcript and their roles in regulating ICP34.5 and ICP0 mRNAs. J Virol83:1433–1442 [CrossRef][PubMed]
    [Google Scholar]
  43. Tay Y., Zhang J., Thomson A. M., Lim B., Rigoutsos I.. 2008; MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature455:1124–1128 [CrossRef][PubMed]
    [Google Scholar]
  44. Tulman E. R., Afonso C. L., Lu Z., Zsak L., Rock D. L., Kutish G. F.. 2000; The genome of a very virulent Marek’s disease virus. J Virol74:7980–7988 [CrossRef][PubMed]
    [Google Scholar]
  45. Umbach J. L., Kramer M. F., Jurak I., Karnowski H. W., Coen D. M., Cullen B. R.. 2008; MicroRNAs expressed by herpes simplex virus 1 during latent infection regulate viral mRNAs. Nature454:780–783[PubMed]
    [Google Scholar]
  46. Waidner L. A., Burnside J., Anderson A. S., Bernberg E. L., German M. A., Meyers B. C., Green P. J., Morgan R. W.. 2011; A microRNA of infectious laryngotracheitis virus can downregulate and direct cleavage of ICP4 mRNA. Virology411:25–31 [CrossRef][PubMed]
    [Google Scholar]
  47. Yao Y., Zhao Y., Xu H., Smith L. P., Lawrie C. H., Watson M., Nair V.. 2008; MicroRNA profile of Marek’s disease virus-transformed T-cell line MSB-1: predominance of virus-encoded microRNAs. J Virol82:4007–4015 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.043109-0
Loading
/content/journal/jgv/10.1099/vir.0.043109-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error