1887

Abstract

Infection with human papillomaviruses (HPVs) is very common and associated with benign and malignant epithelial proliferations of skin and internal squamous mucosae. A subset of the mucosal HPVs are oncogenic and associated with 5 % of all cancers in men and women. There are two licensed prophylactic vaccines, both target HPV 16 and 18, the two most pathogenic, oncogenic types and one, additionally, targets HPV 6 and 11 the cause of genital warts. The approach of deliberate immunization with oncogenic HPV E6 and/or E7 proteins and the generation of antigen-specific cytotoxic T-cells as an immunotherapy for HPV-associated cancer and their high-grade pre-cancers has been tested with a wide array of potential vaccine delivery systems in Phase I/II trials with varying success. Understanding local viral and tumour immune evasion strategies is a prerequisite for the rational design of therapeutic vaccines for HPV-associated infection and disease, progress in this is discussed. There are no antiviral drugs for the treatment of HPV infection and disease. Current therapies are not targeted antiviral therapies, but either attempt physical removal of the lesion or induce inflammation and a bystander immune response. There has been recent progress in the identification and characterization of molecular targets for small molecule antagonists of the HPV proteins E1, E2 and E6 or their interactions with their cellular targets. Lead compounds that could disrupt E1–E2 protein–protein interactions have been discovered as have inhibitors of E6–E6-AP-binding interactions. Some of these compounds showed nanomolar affinities and high specificities and demonstrate the feasibility of this approach for HPV infections. These studies are, however, at an early phase and it is unlikely that any specific anti-HPV chemotherapeutic will be in the clinic within the next 10–20 years.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.039677-0
2012-04-01
2020-01-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/93/4/681.html?itemId=/content/journal/jgv/10.1099/vir.0.039677-0&mimeType=html&fmt=ahah

References

  1. Abbate E. A. , Voitenleitner C. , Botchan M. R. . ( 2006; ). Structure of the papillomavirus DNA-tethering complex E2:Brd4 and a peptide that ablates HPV chromosomal association. . Mol Cell 24:, 877–889. [CrossRef] [PubMed]
    [Google Scholar]
  2. Abramson A. L. , Nouri M. , Mullooly V. , Fisch G. , Steinberg B. M. . ( 2004; ). Latent human papillomavirus infection is comparable in the larynx and trachea. . J Med Virol 72:, 473–477. [CrossRef] [PubMed]
    [Google Scholar]
  3. Ahmad N. , Gupta S. , Mukhtar H. . ( 2000; ). Green tea polyphenol epigallocatechin-3-gallate differentially modulates nuclear factor κB in cancer cells versus normal cells. . Arch Biochem Biophys 376:, 338–346. [CrossRef] [PubMed]
    [Google Scholar]
  4. Amin A. A. , Titolo S. , Pelletier A. , Fink D. , Cordingley M. G. , Archambault J. . ( 2000; ). Identification of domains of the HPV11 E1 protein required for DNA replication in vitro. . Virology 272:, 137–150. [CrossRef] [PubMed]
    [Google Scholar]
  5. Arbyn M. , Castellsagué X. , de Sanjosé S. , Bruni L. , Saraiya M. , Bray F. , Ferlay J. . ( 2011; ). Worldwide burden of cervical cancer in 2008. . Ann Oncol 22:, 2675–2686. [CrossRef] [PubMed]
    [Google Scholar]
  6. Batman G. , Oliver A. W. , Zehbe I. , Richard C. , Hampson L. , Hampson I. N. . ( 2011; ). Lopinavir up-regulates expression of the antiviral protein ribonuclease L in human papillomavirus-positive cervical carcinoma cells. . Antivir Ther 16:, 515–525. [CrossRef] [PubMed]
    [Google Scholar]
  7. Be X. , Hong Y. , Wei J. , Androphy E. J. , Chen J. J. , Baleja J. D. . ( 2001; ). Solution structure determination and mutational analysis of the papillomavirus E6 interacting peptide of E6AP. . Biochemistry 40:, 1293–1299. [CrossRef] [PubMed]
    [Google Scholar]
  8. Beltz L. A. , Bayer D. K. , Moss A. L. , Simet I. M. . ( 2006; ). Mechanisms of cancer prevention by green and black tea polyphenols. . Anticancer Agents Med Chem 6:, 389–406. [CrossRef] [PubMed]
    [Google Scholar]
  9. Bernard H. U. , Burk R. D. , Chen Z. , van Doorslaer K. , Hausen H. Z. , de Villiers E. M. . ( 2010; ). Classification of papillomaviruses (PVs) based on 189 PV types and proposal of taxonomic amendments. . Virology 401:, 70–79. [CrossRef] [PubMed]
    [Google Scholar]
  10. Beutner K. R. , Tyring S. K. , Trofatter K. F. J. Jr , Douglas J. M. J. Jr , Spruance S. , Owens M. L. , Fox T. L. , Hougham A. J. , Schmitt K. A. . ( 1998; ). Imiquimod, a patient-applied immune-response modifier for treatment of external genital warts. . Antimicrob Agents Chemother 42:, 789–794.[PubMed]
    [Google Scholar]
  11. Cao Y. , Zhao J. , Yang Z. , Cai Z. , Zhang B. , Zhou Y. , Shen G. X. , Chen X. , Li S. , Huang B. . ( 2010; ). CD4+FOXP3+ regulatory T cell depletion by low-dose cyclophosphamide prevents recurrence in patients with large condylomata acuminata after laser therapy. . Clin Immunol 136:, 21–29. [CrossRef] [PubMed]
    [Google Scholar]
  12. Chiang C. M. , Ustav M. , Stenlund A. , Ho T. F. , Broker T. R. , Chow L. T. . ( 1992; ). Viral E1 and E2 proteins support replication of homologous and heterologous papillomaviral origins. . Proc Natl Acad Sci U S A 89:, 5799–5803. [CrossRef] [PubMed]
    [Google Scholar]
  13. Curran M. A. , Montalvo W. , Yagita H. , Allison J. P. . ( 2010; ). PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors. . Proc Natl Acad Sci U S A 107:, 4275–4280. [CrossRef] [PubMed]
    [Google Scholar]
  14. D’Souza G. , Kreimer A. R. , Viscidi R. , Pawlita M. , Fakhry C. , Koch W. M. , Westra W. H. , Gillison M. L. . ( 2007; ). Case-control study of human papillomavirus and oropharyngeal cancer. . N Engl J Med 356:, 1944–1956. [CrossRef] [PubMed]
    [Google Scholar]
  15. Daayana S. , Elkord E. , Winters U. , Pawlita M. , Roden R. , Stern P. L. , Kitchener H. C. . ( 2010; ). Phase II trial of imiquimod and HPV therapeutic vaccination in patients with vulval intraepithelial neoplasia. . Br J Cancer 102:, 1129–1136. [CrossRef] [PubMed]
    [Google Scholar]
  16. De Vuyst H. , Lillo F. , Broutet N. , Smith J. S. . ( 2008; ). HIV, human papillomavirus, and cervical neoplasia and cancer in the era of highly active antiretroviral therapy. . Eur J Cancer Prev 17:, 545–554. [CrossRef] [PubMed]
    [Google Scholar]
  17. Dillner J. , Kjaer S. K. , Wheeler C. M. , Sigurdsson K. , Iversen O. E. , Hernandez-Avila M. , Perez G. , Brown D. R. , Koutsky L. A. . & other authors ( 2010; ). Four year efficacy of prophylactic human papillomavirus quadrivalent vaccine against low grade cervical, vulvar, and vaginal intraepithelial neoplasia and anogenital warts: randomised controlled trial. . BMJ 341:, c3493. [CrossRef] [PubMed]
    [Google Scholar]
  18. Donne A. J. , Hampson L. , He X. T. , Day P. J. , Salway F. , Rothera M. P. , Homer J. J. , Hampson I. N. . ( 2009; ). Potential risk factors associated with the use of cidofovir to treat benign human papillomavirus-related disease. . Antivir Ther 14:, 939–952. [CrossRef] [PubMed]
    [Google Scholar]
  19. Doorbar J. . ( 2005; ). The papillomavirus life cycle. . J Clin Virol 32: (Suppl. 1), S7–S15. [CrossRef] [PubMed]
    [Google Scholar]
  20. Faucher A. M. , White P. W. , Brochu C. , Grand-Maître C. , Rancourt J. , Fazal G. . ( 2004; ). Discovery of small-molecule inhibitors of the ATPase activity of human papillomavirus E1 helicase. . J Med Chem 47:, 18–21. [CrossRef] [PubMed]
    [Google Scholar]
  21. Filippakopoulos P. , Qi J. , Picaud S. , Shen Y. , Smith W. B. , Fedorov O. , Morse E. M. , Keates T. , Hickman T. T. . & other authors ( 2010; ). Selective inhibition of BET bromodomains. . Nature 468:, 1067–1073. [CrossRef] [PubMed]
    [Google Scholar]
  22. Fouts E. T. , Yu X. , Egelman E. H. , Botchan M. R. . ( 1999; ). Biochemical and electron microscopic image analysis of the hexameric E1 helicase. . J Biol Chem 274:, 4447–4458. [CrossRef] [PubMed]
    [Google Scholar]
  23. Fox P. A. , Nathan M. , Francis N. , Singh N. , Weir J. , Dixon G. , Barton S. E. , Bower M. . ( 2010; ). A double-blind, randomized controlled trial of the use of imiquimod cream for the treatment of anal canal high-grade anal intraepithelial neoplasia in HIV-positive MSM on HAART, with long-term follow-up data including the use of open-label imiquimod. . AIDS 24:, 2331–2335.[PubMed] [CrossRef]
    [Google Scholar]
  24. Fradet-Turcotte A. , Archambault J. . ( 2007; ). Recent advances in the search for antiviral agents against human papillomaviruses. . Antivir Ther 12:, 431–451.[PubMed]
    [Google Scholar]
  25. Gagnon D. , Joubert S. , Sénéchal H. , Fradet-Turcotte A. , Torre S. , Archambault J. . ( 2009; ). Proteasomal degradation of the papillomavirus E2 protein is inhibited by overexpression of bromodomain-containing protein 4. . J Virol 83:, 4127–4139. [CrossRef] [PubMed]
    [Google Scholar]
  26. Goudreau N. , Cameron D. R. , Déziel R. , Haché B. , Jakalian A. , Malenfant E. , Naud J. , Ogilvie W. W. , O’meara J. . & other authors ( 2007; ). Optimization and determination of the absolute configuration of a series of potent inhibitors of human papillomavirus type-11 E1-E2 protein-protein interaction: a combined medicinal chemistry, NMR and computational chemistry approach. . Bioorg Med Chem 15:, 2690–2700. [CrossRef] [PubMed]
    [Google Scholar]
  27. Govan V. A. . ( 2005; ). Strategies for human papillomavirus therapeutic vaccines and other therapies based on the E6 and E7 oncogenes. . Ann N Y Acad Sci 1056:, 328–343. [CrossRef] [PubMed]
    [Google Scholar]
  28. Hampson L. , Kitchener H. C. , Hampson I. N. . ( 2006; ). Specific HIV protease inhibitors inhibit the ability of HPV16 E6 to degrade p53 and selectively kill E6-dependent cervical carcinoma cells in vitro. . Antivir Ther 11:, 813–825.[PubMed]
    [Google Scholar]
  29. Hegde R. S. . ( 2002; ). The papillomavirus E2 proteins: structure, function, and biology. . Annu Rev Biophys Biomol Struct 31:, 343–360. [CrossRef] [PubMed]
    [Google Scholar]
  30. Herdman M. T. , Pett M. R. , Roberts I. , Alazawi W. O. , Teschendorff A. E. , Zhang X. Y. , Stanley M. A. , Coleman N. . ( 2006; ). Interferon-beta treatment of cervical keratinocytes naturally infected with human papillomavirus 16 episomes promotes rapid reduction in episome numbers and emergence of latent integrants. . Carcinogenesis 27:, 2341–2353. [CrossRef] [PubMed]
    [Google Scholar]
  31. Ilves I. , Kivi S. , Ustav M. . ( 1999; ). Long-term episomal maintenance of bovine papillomavirus type 1 plasmids is determined by attachment to host chromosomes, which is mediated by the viral E2 protein and its binding sites. . J Virol 73:, 4404–4412.[PubMed]
    [Google Scholar]
  32. Ingle A. , Ghim S. , Joh J. , Chepkoech I. , Bennett Jenson A. , Sundberg J. P. . ( 2011; ). Novel laboratory mouse papillomavirus (MusPV) infection. . Vet Pathol 48:, 500–505. [CrossRef] [PubMed]
    [Google Scholar]
  33. Jablonska S. , Dabrowski J. , Jakubowicz K. . ( 1972; ). Epidermodysplasia verruciformis as a model in studies on the role of papovaviruses in oncogenesis. . Cancer Res 32:, 583–589.[PubMed]
    [Google Scholar]
  34. Jones R. W. . ( 2001; ). Vulval intraepithelial neoplasia: current perspectives. . Eur J Gynaecol Oncol 22:, 393–402.[PubMed]
    [Google Scholar]
  35. Kenter G. G. , Welters M. J. , Valentijn A. R. , Lowik M. J. , Berends-van der Meer D. M. , Vloon A. P. , Essahsah F. , Fathers L. M. , Offringa R. . & other authors ( 2009; ). Vaccination against HPV-16 oncoproteins for vulvar intraepithelial neoplasia. . N Engl J Med 361:, 1838–1847. [CrossRef] [PubMed]
    [Google Scholar]
  36. Khan N. , Afaq F. , Saleem M. , Ahmad N. , Mukhtar H. . ( 2006; ). Targeting multiple signaling pathways by green tea polyphenol (−)-epigallocatechin-3-gallate. . Cancer Res 66:, 2500–2505. [CrossRef] [PubMed]
    [Google Scholar]
  37. Kim D. H. , Jarvis R. M. , Xu Y. , Oliver A. W. , Allwood J. W. , Hampson L. , Hampson I. N. , Goodacre R. . ( 2010; ). Combining metabolic fingerprinting and footprinting to understand the phenotypic response of HPV16 E6 expressing cervical carcinoma cells exposed to the HIV anti-viral drug lopinavir. . Analyst (Lond) 135:, 1235–1244. [CrossRef] [PubMed]
    [Google Scholar]
  38. Kines R. C. , Thompson C. D. , Lowy D. R. , Schiller J. T. , Day P. M. . ( 2009; ). The initial steps leading to papillomavirus infection occur on the basement membrane prior to cell surface binding. . Proc Natl Acad Sci U S A 106:, 20458–20463. [CrossRef] [PubMed]
    [Google Scholar]
  39. Kjaer S. K. , Sigurdsson K. , Iversen O. E. , Hernandez-Avila M. , Wheeler C. M. , Perez G. , Brown D. R. , Koutsky L. A. , Tay E. H. . & other authors ( 2009; ). A pooled analysis of continued prophylactic efficacy of quadrivalent human papillomavirus (types 6/11/16/18) vaccine against high-grade cervical and external genital lesions. . Cancer Prev Res (Phila) 2:, 868–878. [CrossRef] [PubMed]
    [Google Scholar]
  40. Koutsky L. . ( 1997; ). Epidemiology of genital human papillomavirus infection. . Am J Med 102: (5A), 3–8. [CrossRef] [PubMed]
    [Google Scholar]
  41. Lacey C. J. . ( 2005; ). Therapy for genital human papillomavirus-related disease. . J Clin Virol 32: (Suppl. 1), S82–S90. [CrossRef] [PubMed]
    [Google Scholar]
  42. Lacey C. J. , Lowndes C. M. , Shah K. V. . ( 2006; ). Chapter 4: burden and management of non-cancerous HPV-related conditions: HPV-6/11 disease. . Vaccine 24: (Suppl. 3), S35–S41. [CrossRef] [PubMed]
    [Google Scholar]
  43. Liu Y. , Liu Z. , Androphy E. , Chen J. , Baleja J. D. . ( 2004; ). Design and characterization of helical peptides that inhibit the E6 protein of papillomavirus. . Biochemistry 43:, 7421–7431. [CrossRef] [PubMed]
    [Google Scholar]
  44. Lusky M. , Hurwitz J. , Seo Y. S. . ( 1994; ). The bovine papillomavirus E2 protein modulates the assembly of but is not stably maintained in a replication-competent multimeric E1-replication origin complex. . Proc Natl Acad Sci U S A 91:, 8895–8899. [CrossRef] [PubMed]
    [Google Scholar]
  45. Masterson P. J. , Stanley M. A. , Lewis A. P. , Romanos M. A. . ( 1998; ). A C-terminal helicase domain of the human papillomavirus E1 protein binds E2 and the DNA polymerase alpha-primase p68 subunit. . J Virol 72:, 7407–7419.[PubMed]
    [Google Scholar]
  46. Maw R. . ( 2004; ). Critical appraisal of commonly used treatment for genital warts. . Int J STD AIDS 15:, 357–364. [CrossRef] [PubMed]
    [Google Scholar]
  47. McBride A. A. , McPhillips M. G. , Oliveira J. G. . ( 2004; ). Brd4: tethering, segregation and beyond. . Trends Microbiol 12:, 527–529. [CrossRef] [PubMed]
    [Google Scholar]
  48. Meyers C. , Mayer T. J. , Ozbun M. A. . ( 1997; ). Synthesis of infectious human papillomavirus type 18 in differentiating epithelium transfected with viral DNA. . J Virol 71:, 7381–7386.[PubMed]
    [Google Scholar]
  49. Moody C. A. , Laimins L. A. . ( 2010; ). Human papillomavirus oncoproteins: pathways to transformation. . Nat Rev Cancer 10:, 550–560. [CrossRef] [PubMed]
    [Google Scholar]
  50. Moore R. A. , Nicholls P. K. , Santos E. B. , Gough G. W. , Stanley M. A. . ( 2002; ). COPV DNA absence following prophylactic L1 PMID vaccination. . J Gen Virol 83:, 2299–2301.[PubMed]
    [Google Scholar]
  51. Moscicki A. B. , Schiffman M. , Kjaer S. , Villa L. L. . ( 2006; ). Chapter 5: updating the natural history of HPV and anogenital cancer. . Vaccine 24: (Suppl. 3), S42–S51. [CrossRef] [PubMed]
    [Google Scholar]
  52. Nominé Y. , Masson M. , Charbonnier S. , Zanier K. , Ristriani T. , Deryckère F. , Sibler A. P. , Desplancq D. , Atkinson R. A. . & other authors ( 2006; ). Structural and functional analysis of E6 oncoprotein: insights in the molecular pathways of human papillomavirus-mediated pathogenesis. . Mol Cell 21:, 665–678. [CrossRef] [PubMed]
    [Google Scholar]
  53. Orth G. , Dompmartin D. , Agache P. , Favre M. , Croissant O. . ( 1978; ). [Plurality of human papillomaviruses (author’s transl)]. . Ann Dermatol Venereol 105:, 279–288.[PubMed]
    [Google Scholar]
  54. Paavonen J. , Naud P. , Salmerón J. , Wheeler C. M. , Chow S. N. , Apter D. , Kitchener H. , Castellsague X. , Teixeira J. C. . & other authors ( 2009; ). Efficacy of human papillomavirus (HPV)-16/18 AS04-adjuvanted vaccine against cervical infection and precancer caused by oncogenic HPV types (PATRICIA): final analysis of a double-blind, randomised study in young women. . Lancet 374:, 301–314. [CrossRef] [PubMed]
    [Google Scholar]
  55. Palefsky J. M. , Gillison M. L. , Strickler H. D. . ( 2006; ). Chapter 16: HPV vaccines in immunocompromised women and men. . Vaccine 24: (Suppl. 3), S140–S146. [CrossRef] [PubMed]
    [Google Scholar]
  56. Parkin D. M. , Bray F. . ( 2006; ). Chapter 2: the burden of HPV-related cancers. . Vaccine 24: (Suppl. 3), S11–S25. [CrossRef] [PubMed]
    [Google Scholar]
  57. Pett M. R. , Herdman M. T. , Palmer R. D. , Yeo G. S. , Shivji M. K. , Stanley M. A. , Coleman N. . ( 2006; ). Selection of cervical keratinocytes containing integrated HPV16 associates with episome loss and an endogenous antiviral response. . Proc Natl Acad Sci U S A 103:, 3822–3827. [CrossRef] [PubMed]
    [Google Scholar]
  58. Prendiville W. . ( 1995; ). Large loop excision of the transformation zone. . Clin Obstet Gynecol 38:, 622–639. [CrossRef] [PubMed]
    [Google Scholar]
  59. Roberts J. N. , Buck C. B. , Thompson C. D. , Kines R. , Bernardo M. , Choyke P. L. , Lowy D. R. , Schiller J. T. . ( 2007; ). Genital transmission of HPV in a mouse model is potentiated by nonoxynol-9 and inhibited by carrageenan. . Nat Med 13:, 857–861. [CrossRef] [PubMed]
    [Google Scholar]
  60. Roberts J. N. , Kines R. C. , Katki H. A. , Lowy D. R. , Schiller J. T. . ( 2011; ). Effect of Pap smear collection and carrageenan on cervicovaginal human papillomavirus-16 infection in a rhesus macaque model. . J Natl Cancer Inst 103:, 737–743. [CrossRef] [PubMed]
    [Google Scholar]
  61. Sanders C. M. , Stenlund A. . ( 1998; ). Recruitment and loading of the E1 initiator protein: an ATP-dependent process catalysed by a transcription factor. . EMBO J 17:, 7044–7055. [CrossRef] [PubMed]
    [Google Scholar]
  62. Sapp M. , Bienkowska-Haba M. . ( 2009; ). Viral entry mechanisms: human papillomavirus and a long journey from extracellular matrix to the nucleus. . FEBS J 276:, 7206–7216. [CrossRef] [PubMed]
    [Google Scholar]
  63. Schwartz S. . ( 2008; ). HPV-16 RNA processing. . Front Biosci 13:, 5880–5891. [CrossRef] [PubMed]
    [Google Scholar]
  64. Seo Y. S. , Müller F. , Lusky M. , Gibbs E. , Kim H. Y. , Phillips B. , Hurwitz J. . ( 1993; ). Bovine papilloma virus (BPV)-encoded E2 protein enhances binding of E1 protein to the BPV replication origin. . Proc Natl Acad Sci U S A 90:, 2865–2869. [CrossRef] [PubMed]
    [Google Scholar]
  65. Sharma R. K. , Elpek K. G. , Yolcu E. S. , Schabowsky R. H. , Zhao H. , Bandura-Morgan L. , Shirwan H. . ( 2009; ). Costimulation as a platform for the development of vaccines: a peptide-based vaccine containing a novel form of 4-1BB ligand eradicates established tumors. . Cancer Res 69:, 4319–4326. [CrossRef] [PubMed]
    [Google Scholar]
  66. Smith J. A. , White E. A. , Sowa M. E. , Powell M. L. , Ottinger M. , Harper J. W. , Howley P. M. . ( 2010; ). Genome-wide siRNA screen identifies SMCX, EP400, and Brd4 as E2-dependent regulators of human papillomavirus oncogene expression. . Proc Natl Acad Sci U S A 107:, 3752–3757. [CrossRef] [PubMed]
    [Google Scholar]
  67. Sonnex C. , Lacey C. J. . ( 2001; ). The treatment of human papillomavirus lesions of the lower genital tract. . Best Pract Res Clin Obstet Gynaecol 15:, 801–816. [CrossRef] [PubMed]
    [Google Scholar]
  68. Stanley M. A. . ( 2002; ). Imiquimod and the imidazoquinolones: mechanism of action and therapeutic potential. . Clin Exp Dermatol 27:, 571–577. [CrossRef] [PubMed]
    [Google Scholar]
  69. Stanley M. . ( 2006; ). Immune responses to human papillomavirus. . Vaccine 24: (Suppl. 1), S16–S22. [CrossRef] [PubMed]
    [Google Scholar]
  70. Su J. H. , Wu A. , Scotney E. , Ma B. , Monie A. , Hung C. F. , Wu T. C. . ( 2010; ). Immunotherapy for cervical cancer: research status and clinical potential. . BioDrugs 24:, 109–129. [CrossRef] [PubMed]
    [Google Scholar]
  71. Talis A. L. , Huibregtse J. M. , Howley P. M. . ( 1998; ). The role of E6AP in the regulation of p53 protein levels in human papillomavirus (HPV)-positive and HPV-negative cells. . J Biol Chem 273:, 6439–6445. [CrossRef] [PubMed]
    [Google Scholar]
  72. Tatti S. , Stockfleth E. , Beutner K. R. , Tawfik H. , Elsasser U. , Weyrauch P. , Mescheder A. . ( 2010; ). Polyphenon E: a new treatment for external anogenital warts. . Br J Dermatol 162:, 176–184. [CrossRef] [PubMed]
    [Google Scholar]
  73. Terlou A. , van Seters M. , Ewing P. C. , Aaronson N. K. , Gundy C. M. , Heijmans-Antonissen C. , Quint W. G. , Blok L. J. , van Beurden M. , Helmerhorst T. J. . ( 2011; ). Treatment of vulvar intraepithelial neoplasia with topical imiquimod: seven years median follow-up of a randomized clinical trial. . Gynecol Oncol 121:, 157–162. [CrossRef] [PubMed]
    [Google Scholar]
  74. Titolo S. , Pelletier A. , Sauvé F. , Brault K. , Wardrop E. , White P. W. , Amin A. , Cordingley M. G. , Archambault J. . ( 1999; ). Role of the ATP-binding domain of the human papillomavirus type 11 E1 helicase in E2-dependent binding to the origin. . J Virol 73:, 5282–5293.[PubMed]
    [Google Scholar]
  75. Titolo S. , Pelletier A. , Pulichino A. M. , Brault K. , Wardrop E. , White P. W. , Cordingley M. G. , Archambault J. . ( 2000; ). Identification of domains of the human papillomavirus type 11 E1 helicase involved in oligomerization and binding to the viral origin. . J Virol 74:, 7349–7361. [CrossRef] [PubMed]
    [Google Scholar]
  76. Titolo S. , Brault K. , Majewski J. , White P. W. , Archambault J. . ( 2003; ). Characterization of the minimal DNA binding domain of the human papillomavirus E1 helicase: fluorescence anisotropy studies and characterization of a dimerization-defective mutant protein. . J Virol 77:, 5178–5191. [CrossRef] [PubMed]
    [Google Scholar]
  77. Trimble C. L. , Frazer I. H. . ( 2009; ). Development of therapeutic HPV vaccines. . Lancet Oncol 10:, 975–980. [CrossRef] [PubMed]
    [Google Scholar]
  78. Trimble C. L. , Clark R. A. , Thoburn C. , Hanson N. C. , Tassello J. , Frosina D. , Kos F. , Teague J. , Jiang Y. . & other authors ( 2010; ). Human papillomavirus 16-associated cervical intraepithelial neoplasia in humans excludes CD8 T cells from dysplastic epithelium. . J Immunol 185:, 7107–7114. [CrossRef] [PubMed]
    [Google Scholar]
  79. van der Burg S. H. , Piersma S. J. , de Jong A. , van der Hulst J. M. , Kwappenberg K. M. , van den Hende M. , Welters M. J. , Van Rood J. J. , Fleuren G. J. . & other authors ( 2007; ). Association of cervical cancer with the presence of CD4+ regulatory T cells specific for human papillomavirus antigens. . Proc Natl Acad Sci U S A 104:, 12087–12092. [CrossRef] [PubMed]
    [Google Scholar]
  80. Van Pachterbeke C. , Bucella D. , Rozenberg S. , Manigart Y. , Gilles C. , Larsimont D. , Vanden Houte K. , Reynders M. , Snoeck R. , Bossens M. . ( 2009; ). Topical treatment of CIN 2+ by cidofovir: results of a phase II, double-blind, prospective, placebo-controlled study. . Gynecol Oncol 115:, 69–74. [CrossRef] [PubMed]
    [Google Scholar]
  81. Viera M. H. , Amini S. , Huo R. , Konda S. , Block S. , Berman B. . ( 2010; ). Herpes simplex virus and human papillomavirus genital infections: new and investigational therapeutic options. . Int J Dermatol 49:, 733–749.[PubMed]
    [Google Scholar]
  82. von Krogh G. , Lacey C. J. , Gross G. , Barrasso R. , Schneider A. . ( 2000; ). European course on HPV associated pathology: guidelines for primary care physicians for the diagnosis and management of anogenital warts. . Sex Transm Infect 76:, 162–168. [CrossRef] [PubMed]
    [Google Scholar]
  83. Welters M. J. , Kenter G. G. , de Vos van Steenwijk P. J. , Löwik M. J. , Berends-van der Meer D. M. , Essahsah F. , Stynenbosch L. F. , Vloon A. P. , Ramwadhdoebe T. H. . & other authors ( 2010; ). Success or failure of vaccination for HPV16-positive vulvar lesions correlates with kinetics and phenotype of induced T-cell responses. . Proc Natl Acad Sci U S A 107:, 11895–11899. [CrossRef] [PubMed]
    [Google Scholar]
  84. White P. W. , Pelletier A. , Brault K. , Titolo S. , Welchner E. , Thauvette L. , Fazekas M. , Cordingley M. G. , Archambault J. . ( 2001; ). Characterization of recombinant HPV6 and 11 E1 helicases: effect of ATP on the interaction of E1 with E2 and mapping of a minimal helicase domain. . J Biol Chem 276:, 22426–22438. [CrossRef] [PubMed]
    [Google Scholar]
  85. White P. W. , Faucher A. M. , Massariol M. J. , Welchner E. , Rancourt J. , Cartier M. , Archambault J. . ( 2005; ). Biphenylsulfonacetic acid inhibitors of the human papillomavirus type 6 E1 helicase inhibit ATP hydrolysis by an allosteric mechanism involving tyrosine 486. . Antimicrob Agents Chemother 49:, 4834–4842. [CrossRef] [PubMed]
    [Google Scholar]
  86. White P. W. , Faucher A. M. , Goudreau N. . ( 2011; ). Small molecule inhibitors of the human papillomavirus E1-E2 interaction. . Curr Top Microbiol Immunol 348:, 61–88. [CrossRef] [PubMed]
    [Google Scholar]
  87. Woo Y. L. , van den Hende M. , Sterling J. C. , Coleman N. , Crawford R. A. , Kwappenberg K. M. , Stanley M. A. , van der Burg S. H. . ( 2010; ). A prospective study on the natural course of low-grade squamous intraepithelial lesions and the presence of HPV16 E2-, E6- and E7-specific T-cell responses. . Int J Cancer 126:, 133–141. [CrossRef] [PubMed]
    [Google Scholar]
  88. Yang L. , Li R. , Mohr I. J. , Clark R. , Botchan M. R. . ( 1991; ). Activation of BPV-1 replication in vitro by the transcription factor E2. . Nature 353:, 628–632. [CrossRef] [PubMed]
    [Google Scholar]
  89. Yang G. Y. , Liao J. , Kim K. , Yurkow E. J. , Yang C. S. . ( 1998; ). Inhibition of growth and induction of apoptosis in human cancer cell lines by tea polyphenols. . Carcinogenesis 19:, 611–616. [CrossRef] [PubMed]
    [Google Scholar]
  90. Yoakim C. , Ogilvie W. W. , Goudreau N. , Naud J. , Haché B. , O’Meara J. A. , Cordingley M. G. , Archambault J. , White P. W. . ( 2003; ). Discovery of the first series of inhibitors of human papillomavirus type 11: inhibition of the assembly of the E1-E2-origin DNA complex. . Bioorg Med Chem Lett 13:, 2539–2541. [CrossRef] [PubMed]
    [Google Scholar]
  91. Zhao C. Y. , Szekely L. , Bao W. , Selivanova G. . ( 2010; ). Rescue of p53 function by small-molecule RITA in cervical carcinoma by blocking E6-mediated degradation. . Cancer Res 70:, 3372–3381. [CrossRef] [PubMed]
    [Google Scholar]
  92. zur Hausen H. , de Villiers E. M. , Gissmann L. . ( 1981; ). Papillomavirus infections and human genital cancer. . Gynecol Oncol 12:, S124–S128. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.039677-0
Loading
/content/journal/jgv/10.1099/vir.0.039677-0
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error