1887

Abstract

Infection of CD8-depleted rhesus macaques with the genetically heterogeneous simian immunodeficiency virus (SIV)mac251 viral swarm provides a rapid-disease model for simian acquired immune deficiency syndrome and SIV-encephalitis (SIVE). The objective was to evaluate how the diversity of the swarm influences the initial seeding of the infection that may potentially affect disease progression. Plasma, lymphoid and non-lymphoid (brain and lung) tissues were collected from two infected macaques euthanized at 21 days post-infection (p.i.), as well as longitudinal specimens and post-mortem tissues from four macaques followed throughout the infection. About 1300 gp120 viral sequences were obtained from the infecting SIVmac251 swarm and the macaques longitudinal and post-mortem samples. Phylogenetic and amino acid signature pattern analyses were carried out to assess frequency, transmission dynamics and persistence of specific viral clusters. Although no significant reduction in viral heterogeneity was found early in infection (21 days p.i.), transmission and replication of SIV variants was not entirely random. In particular, two distinct motifs under-represented (<4 %) in the infecting swarm were found at high frequencies (up to 14 %) in all six macaques as early as 21 days p.i. Moreover, a macrophage tropic variant not detected in the viral swarm (<0.3 %) was present at high frequency (29–100 %) in sequences derived from the brain of two macaques with meningitis or severe SIVE. This study demonstrates the highly efficient transmission and persistence of multiple low frequency SIVmac251 founder variants, characterized by specific gp120 motifs that may be linked to pathogenesis in the rapid-disease model of neuroAIDS.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.039586-0
2012-05-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/93/5/925.html?itemId=/content/journal/jgv/10.1099/vir.0.039586-0&mimeType=html&fmt=ahah

References

  1. Anthony I. C. , Ramage S. N. , Carnie F. W. , Simmonds P. , Bell J. E. . ( 2005; ). Influence of HAART on HIV-related CNS disease and neuroinflammation. . J Neuropathol Exp Neurol 64:, 529–536.[PubMed]
    [Google Scholar]
  2. Bell J. E. . ( 2004; ). An update on the neuropathology of HIV in the HAART era. . Histopathology 45:, 549–559. [CrossRef] [PubMed]
    [Google Scholar]
  3. Burdo T. H. , Soulas C. , Orzechowski K. , Button J. , Krishnan A. , Sugimoto C. , Alvarez X. , Kuroda M. J. , Williams K. C. . ( 2010; ). Increased monocyte turnover from bone marrow correlates with severity of SIV encephalitis and CD163 levels in plasma. . PLoS Pathog 6:, e1000842. [CrossRef] [PubMed]
    [Google Scholar]
  4. Burns D. P. , Desrosiers R. C. . ( 1991; ). Selection of genetic variants of simian immunodeficiency virus in persistently infected rhesus monkeys. . J Virol 65:, 1843–1854.[PubMed]
    [Google Scholar]
  5. Burudi E. M. , Fox H. S. . ( 2001; ). Simian immunodeficiency virus model of HIV-induced central nervous system dysfunction. . Adv Virus Res 56:, 435–468. [CrossRef] [PubMed]
    [Google Scholar]
  6. Chakrabarti L. , Hurtrel M. , Maire M. A. , Vazeux R. , Dormont D. , Montagnier L. , Hurtrel B. . ( 1991; ). Early viral replication in the brain of SIV-infected rhesus monkeys. . Am J Pathol 139:, 1273–1280.[PubMed]
    [Google Scholar]
  7. Davis L. E. , Hjelle B. L. , Miller V. E. , Palmer D. L. , Llewellyn A. L. , Merlin T. L. , Young S. A. , Mills R. G. , Wachsman W. , Wiley C. A. . ( 1992; ). Early viral brain invasion in iatrogenic human immunodeficiency virus infection. . Neurology 42:, 1736–1739.[PubMed] [CrossRef]
    [Google Scholar]
  8. Desrosiers R. C. . ( 1990; ). The simian immunodeficiency viruses. . Annu Rev Immunol 8:, 557–578. [CrossRef] [PubMed]
    [Google Scholar]
  9. Greenier J. L. , Miller C. J. , Lu D. , Dailey P. J. , F. X. , Kunstman K. J. , Wolinsky S. M. , Marthas M. L. . ( 2001; ). Route of simian immunodeficiency virus inoculation determines the complexity but not the identity of viral variant populations that infect rhesus macaques. . J Virol 75:, 3753–3765. [CrossRef] [PubMed]
    [Google Scholar]
  10. Guindon S. , Delsuc F. , Dufayard J. F. , Gascuel O. . ( 2009; ). Estimating maximum likelihood phylogenies with PhyML. . Methods Mol Biol 537:, 113–137. [CrossRef] [PubMed]
    [Google Scholar]
  11. Hall T. A. . ( 1999; ). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. . Nucleic Acids Symp Ser 41:, 95–98.
    [Google Scholar]
  12. Johnson R. T. , McArthur J. C. , Narayan O. . ( 1988; ). The neurobiology of human immunodeficiency virus infections. . FASEB J 2:, 2970–2981.[PubMed]
    [Google Scholar]
  13. Johnson P. R. , Hamm T. E. , Goldstein S. , Kitov S. , Hirsch V. M. . ( 1991; ). The genetic fate of molecularly cloned simian immunodeficiency virus in experimentally infected macaques. . Virology 185:, 217–228. [CrossRef] [PubMed]
    [Google Scholar]
  14. Keele B. F. , Li H. , Learn G. H. , Hraber P. , Giorgi E. E. , Grayson T. , Sun C. , Chen Y. , Yeh W. W. . & other authors ( 2009; ). Low-dose rectal inoculation of rhesus macaques by SIVsmE660 or SIVmac251 recapitulates human mucosal infection by HIV-1. . J Exp Med 206:, 1117–1134. [CrossRef] [PubMed]
    [Google Scholar]
  15. Kestler H. , Kodama T. , Ringler D. , Marthas M. , Pedersen N. , Lackner A. , Regier D. , Sehgal P. , Daniel M. . & other authors ( 1990; ). Induction of AIDS in rhesus monkeys by molecularly cloned simian immunodeficiency virus. . Science 248:, 1109–1112. [CrossRef] [PubMed]
    [Google Scholar]
  16. Klepac-Ceraj V. , Ceraj I. , Polz M. . ( 2006; ). Clusterer: extendable java application for sequence grouping and cluster analyses. . Online J Bioinform 7:, 15–21.
    [Google Scholar]
  17. Kodama T. , Mori K. , Kawahara T. , Ringler D. J. , Desrosiers R. C. . ( 1993; ). Analysis of simian immunodeficiency virus sequence variation in tissues of rhesus macaques with simian AIDS. . J Virol 67:, 6522–6534.[PubMed]
    [Google Scholar]
  18. Lackner A. A. . ( 1994; ). Pathology of simian immunodeficiency virus induced disease. . Curr Top Microbiol Immunol 188:, 35–64. [CrossRef] [PubMed]
    [Google Scholar]
  19. Lamers S. L. , Sleasman J. W. , Goodenow M. M. . ( 1996; ). A model for alignment of Env V1 and V2 hypervariable domains from human and simian immunodeficiency viruses. . AIDS Res Hum Retroviruses 12:, 1169–1178. [CrossRef] [PubMed]
    [Google Scholar]
  20. Lamers S. L. , Gray R. R. , Salemi M. , Huysentruyt L. C. , McGrath M. S. . ( 2011; ). HIV-1 phylogenetic analysis shows HIV-1 transits through the meninges to brain and peripheral tissues. . Infect Genet Evol 11:, 31–37. [CrossRef] [PubMed]
    [Google Scholar]
  21. Lane T. E. , Buchmeier M. J. , Watry D. D. , Jakubowski D. B. , Fox H. S. . ( 1995; ). Serial passage of microglial SIV results in selection of homogeneous env quasispecies in the brain. . Virology 212:, 458–465. [CrossRef] [PubMed]
    [Google Scholar]
  22. Lifson J. D. , Rossio J. L. , Piatak M. J. Jr , Parks T. , Li L. , Kiser R. , Coalter V. , Fisher B. , Flynn B. M. . & other authors ( 2001; ). Role of CD8+ lymphocytes in control of simian immunodeficiency virus infection and resistance to rechallenge after transient early antiretroviral treatment. . J Virol 75:, 10187–10199. [CrossRef] [PubMed]
    [Google Scholar]
  23. Liu Y. , Tang X. P. , McArthur J. C. , Scott J. , Gartner S. . ( 2000; ). Analysis of human immunodeficiency virus type 1 gp160 sequences from a patient with HIV dementia: evidence for monocyte trafficking into brain. . J Neurovirol 6: (Suppl. 1), S70–S81.[PubMed]
    [Google Scholar]
  24. Mankowski J. L. , Clements J. E. , Zink M. C. . ( 2002; ). Searching for clues: tracking the pathogenesis of human immunodeficiency virus central nervous system disease by use of an accelerated, consistent simian immunodeficiency virus macaque model. . J Infect Dis 186: (Suppl. 2), S199–S208. [CrossRef] [PubMed]
    [Google Scholar]
  25. Mori K. , Ringler D. J. , Kodama T. , Desrosiers R. C. . ( 1992; ). Complex determinants of macrophage tropism in env of simian immunodeficiency virus. . J Virol 66:, 2067–2075.[PubMed]
    [Google Scholar]
  26. Mori K. , Rosenzweig M. , Desrosiers R. C. . ( 2000; ). Mechanisms for adaptation of simian immunodeficiency virus to replication in alveolar macrophages. . J Virol 74:, 10852–10859. [CrossRef] [PubMed]
    [Google Scholar]
  27. Nickle D. C. , Jensen M. A. , Shriner D. , Brodie S. J. , Frenkel L. M. , Mittler J. E. , Mullins J. I. . ( 2003; ). Evolutionary indicators of human immunodeficiency virus type 1 reservoirs and compartments. . J Virol 77:, 5540–5546. [CrossRef] [PubMed]
    [Google Scholar]
  28. Pillai S. K. , Pond S. L. , Liu Y. , Good B. M. , Strain M. C. , Ellis R. J. , Letendre S. , Smith D. M. , Günthard H. F. . & other authors ( 2006; ). Genetic attributes of cerebrospinal fluid-derived HIV-1 env. . Brain 129:, 1872–1883. [CrossRef] [PubMed]
    [Google Scholar]
  29. Power C. , McArthur J. C. , Johnson R. T. , Griffin D. E. , Glass J. D. , Dewey R. , Chesebro B. . ( 1995; ). Distinct HIV-1 env sequences are associated with neurotropism and neurovirulence. . Curr Top Microbiol Immunol 202:, 89–104. [CrossRef] [PubMed]
    [Google Scholar]
  30. Ratai E. M. , Pilkenton S. , He J. , Fell R. , Bombardier J. P. , Joo C. G. , Lentz M. R. , Kim W. K. , Burdo T. H. . & other authors ( 2011; ). CD8+ lymphocyte depletion without SIV infection does not produce metabolic changes or pathological abnormalities in the rhesus macaque brain. . J Med Primatol 40:, 300–309. [CrossRef] [PubMed]
    [Google Scholar]
  31. Sacktor N. , Nakasujja N. , Skolasky R. L. , Rezapour M. , Robertson K. , Musisi S. , Katabira E. , Ronald A. , Clifford D. B. . & other authors ( 2009; ). HIV subtype D is associated with dementia, compared with subtype A, in immunosuppressed individuals at risk of cognitive impairment in Kampala, Uganda. . Clin Infect Dis 49:, 780–786. [CrossRef] [PubMed]
    [Google Scholar]
  32. Salemi M. , Lamers S. L. , Yu S. , de Oliveira T. , Fitch W. M. , McGrath M. S. . ( 2005; ). Phylodynamic analysis of human immunodeficiency virus type 1 in distinct brain compartments provides a model for the neuropathogenesis of AIDS. . J Virol 79:, 11343–11352. [CrossRef] [PubMed]
    [Google Scholar]
  33. Schmitz J. E. , Kuroda M. J. , Santra S. , Sasseville V. G. , Simon M. A. , Lifton M. A. , Racz P. , Tenner-Racz K. , Dalesandro M. . & other authors ( 1999; ). Control of viremia in simian immunodeficiency virus infection by CD8+ lymphocytes. . Science 283:, 857–860. [CrossRef] [PubMed]
    [Google Scholar]
  34. Shankarappa R. , Margolick J. B. , Gange S. J. , Rodrigo A. G. , Upchurch D. , Farzadegan H. , Gupta P. , Rinaldo C. R. , Learn G. H. . & other authors ( 1999; ). Consistent viral evolutionary changes associated with the progression of human immunodeficiency virus type 1 infection. . J Virol 73:, 10489–10502.[PubMed]
    [Google Scholar]
  35. Smit T. K. , Wang B. , Ng T. , Osborne R. , Brew B. , Saksena N. K. . ( 2001; ). Varied tropism of HIV-1 isolates derived from different regions of adult brain cortex discriminate between patients with and without AIDS dementia complex (ADC): evidence for neurotropic HIV variants. . Virology 279:, 509–526. [CrossRef] [PubMed]
    [Google Scholar]
  36. Strickland S. L. , Gray R. R. , Lamers S. L. , Burdo T. H. , Huenink E. , Nolan D. J. , Nowlin B. , Alvarez X. , Midkiff C. C. . & other authors ( 2011; ). Significant genetic heterogeneity of the SIVmac251 viral swarm derived from different sources. . AIDS Res Hum Retroviruses 27:, 1327–1332. [CrossRef] [PubMed]
    [Google Scholar]
  37. Tamura K. , Dudley J. , Nei M. , Kumar S. . ( 2007; ). mega4: Molecular Evolutionary Genetics Analysis (mega) software version 4.0. . Mol Biol Evol 24:, 1596–1599. [CrossRef] [PubMed]
    [Google Scholar]
  38. Thompson J. D. , Gibson T. J. , Plewniak F. , Jeanmougin F. , Higgins D. G. . ( 1997; ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef] [PubMed]
    [Google Scholar]
  39. Williams K. , Burdo T. H. . ( 2012; ). Monocyte mobilization, activation markers, and unique macrophage populations in the brain: observations from SIV infected monkeys are informative with regard to pathogenic mechanisms of HIV infection in humans. . J Neuroimmune Pharmacol doi: 10.1007/S11481-011-9330-3 [PubMed]
    [Google Scholar]
  40. Williams K. C. , Hickey W. F. . ( 2002; ). Central nervous system damage, monocytes and macrophages, and neurological disorders in AIDS. . Annu Rev Neurosci 25:, 537–562. [CrossRef] [PubMed]
    [Google Scholar]
  41. Zink M. C. , Spelman J. P. , Robinson R. B. , Clements J. E. . ( 1998; ). SIV infection of macaques – modeling the progression to AIDS dementia. . J Neurovirol 4:, 249–259. [CrossRef] [PubMed]
    [Google Scholar]
  42. Zink M. C. , Laast V. A. , Helke K. L. , Brice A. K. , Barber S. A. , Clements J. E. , Mankowski J. L. . ( 2006; ). From mice to macaques – animal models of HIV nervous system disease. . Curr HIV Res 4:, 293–305. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.039586-0
Loading
/content/journal/jgv/10.1099/vir.0.039586-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error