1887

Abstract

Low micromolar, non-cytotoxic concentrations of cyclosporin A (CsA) strongly affected the replication of severe acute respiratory syndrome coronavirus (SARS-CoV), human coronavirus 229E and mouse hepatitis virus in cell culture, as was evident from the strong inhibition of GFP reporter gene expression and a reduction of up to 4 logs in progeny titres. Upon high-multiplicity infection, CsA treatment rendered SARS-CoV RNA and protein synthesis almost undetectable, suggesting an early block in replication. siRNA-mediated knockdown of the expression of the prominent CsA targets cyclophilin A and B did not affect SARS-CoV replication, suggesting either that these specific cyclophilin family members are dispensable or that the reduced expression levels suffice to support replication.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.034983-0
2011-11-01
2020-01-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/92/11/2542.html?itemId=/content/journal/jgv/10.1099/vir.0.034983-0&mimeType=html&fmt=ahah

References

  1. Bose S. , Mathur M. , Bates P. , Joshi N. , Banerjee A. K. . ( 2003; ). Requirement for cyclophilin A for the replication of vesicular stomatitis virus New Jersey serotype. . J Gen Virol 84:, 1687–1699. [CrossRef] [PubMed]
    [Google Scholar]
  2. Briggs C. J. , Ott D. E. , Coren L. V. , Oroszlan S. , Tözsér J. . ( 1999; ). Comparison of the effect of FK506 and cyclosporin A on virus production in H9 cells chronically and newly infected by HIV-1. . Arch Virol 144:, 2151–2160. [CrossRef] [PubMed]
    [Google Scholar]
  3. Cervantes-Barragan L. , Züst R. , Maier R. , Sierro S. , Janda J. , Levy F. , Speiser D. , Romero P. , Rohrlich P. S. et al. ( 2010; ). Dendritic cell-specific antigen delivery by coronavirus vaccine vectors induces long-lasting protective antiviral and antitumor immunity. . MBio 1:, e00171–e00110. [CrossRef] [PubMed]
    [Google Scholar]
  4. Chatterji U. , Bobardt M. , Selvarajah S. , Yang F. , Tang H. , Sakamoto N. , Vuagniaux G. , Parkinson T. , Gallay P. . ( 2009; ). The isomerase active site of cyclophilin A is critical for hepatitis C virus replication. . J Biol Chem 284:, 16998–17005. [CrossRef] [PubMed]
    [Google Scholar]
  5. Chatterji U. , Lim P. , Bobardt M. D. , Wieland S. , Cordek D. G. , Vuagniaux G. , Chisari F. , Cameron C. E. , Targett-Adams P. et al. ( 2010; ). HCV resistance to cyclosporin A does not correlate with a resistance of the NS5A-cyclophilin A interaction to cyclophilin inhibitors. . J Hepatol 53:, 50–56. [CrossRef] [PubMed]
    [Google Scholar]
  6. Ciesek S. , Steinmann E. , Wedemeyer H. , Manns M. P. , Neyts J. , Tautz N. , Madan V. , Bartenschlager R. , von Hahn T. , Pietschmann T. . ( 2009; ). Cyclosporine A inhibits hepatitis C virus nonstructural protein 2 through cyclophilin A. . Hepatology 50:, 1638–1645. [CrossRef] [PubMed]
    [Google Scholar]
  7. Coelmont L. , Hanoulle X. , Chatterji U. , Berger C. , Snoeck J. , Bobardt M. , Lim P. , Vliegen I. , Paeshuyse J. et al. ( 2010; ). DEB025 (Alisporivir) inhibits hepatitis C virus replication by preventing a cyclophilin A induced cistrans isomerisation in domain II of NS5A. . PLoS ONE 5:, e13687. [CrossRef] [PubMed]
    [Google Scholar]
  8. Das Sarma J. , Scheen E. , Seo S. H. , Koval M. , Weiss S. R. . ( 2002; ). Enhanced green fluorescent protein expression may be used to monitor murine coronavirus spread in vitro and in the mouse central nervous system. . J Neurovirol 8:, 381–391. [CrossRef] [PubMed]
    [Google Scholar]
  9. Davis T. L. , Walker J. R. , Campagna-Slater V. , Finerty P. J. , Paramanathan R. , Bernstein G. , MacKenzie F. , Tempel W. , Ouyang H. et al. ( 2010; ). Structural and biochemical characterization of the human cyclophilin family of peptidyl-prolyl isomerases. . PLoS Biol 8:, e1000439. [CrossRef] [PubMed]
    [Google Scholar]
  10. de Haan C. A. , Rottier P. J. . ( 2006; ). Hosting the severe acute respiratory syndrome coronavirus: specific cell factors required for infection. . Cell Microbiol 8:, 1211–1218. [CrossRef] [PubMed]
    [Google Scholar]
  11. Fernandes F. , Ansari I. U. , Striker R. . ( 2010; ). Cyclosporine inhibits a direct interaction between cyclophilins and hepatitis C NS5A. . PLoS ONE 5:, e9815. [CrossRef] [PubMed]
    [Google Scholar]
  12. Flisiak R. , Horban A. , Gallay P. , Bobardt M. , Selvarajah S. , Wiercinska-Drapalo A. , Siwak E. , Cielniak I. , Higersberger J. et al. ( 2008; ). The cyclophilin inhibitor Debio-025 shows potent anti-hepatitis C effect in patients coinfected with hepatitis C and human immunodeficiency virus. . Hepatology 47:, 817–826. [CrossRef] [PubMed]
    [Google Scholar]
  13. Flisiak R. , Feinman S. V. , Jablkowski M. , Horban A. , Kryczka W. , Pawlowska M. , Heathcote J. E. , Mazzella G. , Vandelli C. et al. ( 2009; ). The cyclophilin inhibitor Debio 025 combined with PEG IFNα2a significantly reduces viral load in treatment-naïve hepatitis C patients. . Hepatology 49:, 1460–1468. [CrossRef] [PubMed]
    [Google Scholar]
  14. Gaither L. A. , Borawski J. , Anderson L. J. , Balabanis K. A. , Devay P. , Joberty G. , Rau C. , Schirle M. , Bouwmeester T. , Mickanin C. . ( 2010; ). Multiple cyclophilins involved in different cellular pathways mediate HCV replication. . Virology 397:, 43–55. [CrossRef] [PubMed]
    [Google Scholar]
  15. Goto K. , Watashi K. , Inoue D. , Hijikata M. , Shimotohno K. . ( 2009; ). Identification of cellular and viral factors related to anti-hepatitis C virus activity of cyclophilin inhibitor. . Cancer Sci 100:, 1943–1950. [CrossRef] [PubMed]
    [Google Scholar]
  16. Ishii N. , Watashi K. , Hishiki T. , Goto K. , Inoue D. , Hijikata M. , Wakita T. , Kato N. , Shimotohno K. . ( 2006; ). Diverse effects of cyclosporine on hepatitis C virus strain replication. . J Virol 80:, 4510–4520. [CrossRef] [PubMed]
    [Google Scholar]
  17. Kambara H. , Tani H. , Mori Y. , Abe T. , Katoh H. , Fukuhara T. , Taguwa S. , Moriishi K. , Matsuura Y. . ( 2011; ). Involvement of cyclophilin B in the replication of Japanese encephalitis virus. . Virology 412:, 211–219. [CrossRef] [PubMed]
    [Google Scholar]
  18. Kamitani W. , Narayanan K. , Huang C. , Lokugamage K. , Ikegami T. , Ito N. , Kubo H. , Makino S. . ( 2006; ). Severe acute respiratory syndrome coronavirus nsp1 protein suppresses host gene expression by promoting host mRNA degradation. . Proc Natl Acad Sci U S A 103:, 12885–12890. [CrossRef] [PubMed]
    [Google Scholar]
  19. Kaul A. , Stauffer S. , Berger C. , Pertel T. , Schmitt J. , Kallis S. , Zayas M. , Lohmann V. , Luban J. , Bartenschlager R. . ( 2009; ). Essential role of cyclophilin A for hepatitis C virus replication and virus production and possible link to polyprotein cleavage kinetics. . PLoS Pathog 5:, e1000546. [CrossRef] [PubMed]
    [Google Scholar]
  20. Knoops K. , Kikkert M. , Worm S. H. , Zevenhoven-Dobbe J. C. , van der Meer Y. , Koster A. J. , Mommaas A. M. , Snijder E. J. . ( 2008; ). SARS-coronavirus replication is supported by a reticulovesicular network of modified endoplasmic reticulum. . PLoS Biol 6:, e226. [CrossRef] [PubMed]
    [Google Scholar]
  21. Knoops K. , Swett-Tapia C. , van den Worm S. H. , Te Velthuis A. J. , Koster A. J. , Mommaas A. M. , Snijder E. J. , Kikkert M. . ( 2010; ). Integrity of the early secretory pathway promotes, but is not required for, severe acute respiratory syndrome coronavirus RNA synthesis and virus-induced remodeling of endoplasmic reticulum membranes. . J Virol 84:, 833–846. [CrossRef] [PubMed]
    [Google Scholar]
  22. Kono M. , Tatsumi K. , Imai A. M. , Saito K. , Kuriyama T. , Shirasawa H. . ( 2008; ). Inhibition of human coronavirus 229E infection in human epithelial lung cells (L132) by chloroquine: involvement of p38 MAPK and ERK. . Antiviral Res 77:, 150–152. [CrossRef] [PubMed]
    [Google Scholar]
  23. Lawitz E. , Godofsky E. , Rouzier R. , Marbury T. , Nguyen T. , Ke J. , Huang M. , Praestgaard J. , Serra D. , Evans T. G. . ( 2011; ). Safety, pharmacokinetics, and antiviral activity of the cyclophilin inhibitor NIM811 alone or in combination with pegylated interferon in HCV-infected patients receiving 14 days of therapy. . Antiviral Res 89:, 238–245. [CrossRef] [PubMed]
    [Google Scholar]
  24. Liu Z. , Yang F. , Robotham J. M. , Tang H. . ( 2009; ). Critical role of cyclophilin A and its prolyl-peptidyl isomerase activity in the structure and function of the hepatitis C virus replication complex. . J Virol 83:, 6554–6565. [CrossRef] [PubMed]
    [Google Scholar]
  25. Luo C. , Luo H. , Zheng S. , Gui C. , Yue L. , Yu C. , Sun T. , He P. , Chen J. , Shen J. . ( 2004; ). Nucleocapsid protein of SARS coronavirus tightly binds to human cyclophilin A. . Biochem Biophys Res Commun 321:, 557–565. [CrossRef] [PubMed]
    [Google Scholar]
  26. Manel N. , Hogstad B. , Wang Y. , Levy D. E. , Unutmaz D. , Littman D. R. . ( 2010; ). A cryptic sensor for HIV-1 activates antiviral innate immunity in dendritic cells. . Nature 467:, 214–217. [CrossRef] [PubMed]
    [Google Scholar]
  27. Nakagawa M. , Sakamoto N. , Enomoto N. , Tanabe Y. , Kanazawa N. , Koyama T. , Kurosaki M. , Maekawa S. , Yamashiro T. , Chen C.-H. . ( 2004; ). Specific inhibition of hepatitis C virus replication by cyclosporin A. . Biochem Biophys Res Commun 313:, 42–47. [CrossRef] [PubMed]
    [Google Scholar]
  28. Nakagawa M. , Sakamoto N. , Tanabe Y. , Koyama T. , Itsui Y. , Takeda Y. , Chen C. H. , Kakinuma S. , Oooka S. et al. ( 2005; ). Suppression of hepatitis C virus replication by cyclosporin a is mediated by blockade of cyclophilins. . Gastroenterology 129:, 1031–1041. [CrossRef] [PubMed]
    [Google Scholar]
  29. Paeshuyse J. , Kaul A. , De Clercq E. , Rosenwirth B. , Dumont J. M. , Scalfaro P. , Bartenschlager R. , Neyts J. . ( 2006; ). The non-immunosuppressive cyclosporin DEBIO-025 is a potent inhibitor of hepatitis C virus replication in vitro . . Hepatology 43:, 761–770. [CrossRef] [PubMed]
    [Google Scholar]
  30. Perlman S. , Netland J. . ( 2009; ). Coronaviruses post-SARS: update on replication and pathogenesis. . Nat Rev Microbiol 7:, 439–450. [CrossRef] [PubMed]
    [Google Scholar]
  31. Qing M. , Yang F. , Zhang B. , Zou G. , Robida J. M. , Yuan Z. , Tang H. , Shi P. Y. . ( 2009; ). Cyclosporine inhibits flavivirus replication through blocking the interaction between host cyclophilins and viral NS5 protein. . Antimicrob Agents Chemother 53:, 3226–3235. [CrossRef] [PubMed]
    [Google Scholar]
  32. Sims A. C. , Burkett S. E. , Yount B. , Pickles R. J. . ( 2008; ). SARS-CoV replication and pathogenesis in an in vitro model of the human conducting airway epithelium. . Virus Res 133:, 33–44. [CrossRef] [PubMed]
    [Google Scholar]
  33. Stockman L. J. , Bellamy R. , Garner P. . ( 2006; ). SARS: systematic review of treatment effects. . PLoS Med 3:, e343. [CrossRef] [PubMed]
    [Google Scholar]
  34. te Velthuis A. J. , Arnold J. J. , Cameron C. E. , van den Worm S. H. , Snijder E. J. . ( 2010a; ). The RNA polymerase activity of SARS-coronavirus nsp12 is primer dependent. . Nucleic Acids Res 38:, 203–214. [CrossRef] [PubMed]
    [Google Scholar]
  35. te Velthuis A. J. , van den Worm S. H. , Sims A. C. , Baric R. S. , Snijder E. J. , van Hemert M. J. . ( 2010b; ). Zn2+ inhibits coronavirus and arterivirus RNA polymerase activity in vitro and zinc ionophores block the replication of these viruses in cell culture. . PLoS Pathog 6:, e1001176. [CrossRef] [PubMed]
    [Google Scholar]
  36. Tong T. R. . ( 2009; ). Drug targets in severe acute respiratory syndrome (SARS) virus and other coronavirus infections. . Infect Disord Drug Targets 9:, 223–245.[PubMed] [CrossRef]
    [Google Scholar]
  37. van Hemert M. J. , van den Worm S. H. , Knoops K. , Mommaas A. M. , Gorbalenya A. E. , Snijder E. J. . ( 2008; ). SARS-coronavirus replication/transcription complexes are membrane-protected and need a host factor for activity in vitro . . PLoS Pathog 4:, e1000054. [CrossRef] [PubMed]
    [Google Scholar]
  38. Vincent M. J. , Bergeron E. , Benjannet S. , Erickson B. R. , Rollin P. E. , Ksiazek T. G. , Seidah N. G. , Nichol S. T. . ( 2005; ). Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. . Virol J 2:, 69. [CrossRef] [PubMed]
    [Google Scholar]
  39. Vogels M. W. , van Balkom B. W. , Kaloyanova D. V. , Batenburg J. J. , Heck A. J. , Helms J. B. , Rottier P. J. , de Haan C. A. . ( 2011; ). Identification of host factors involved in coronavirus replication by quantitative proteomics analysis. . Proteomics 11:, 64–80. [CrossRef] [PubMed]
    [Google Scholar]
  40. Watashi K. , Hijikata M. , Hosaka M. , Yamaji M. , Shimotohno K. . ( 2003; ). Cyclosporin A suppresses replication of hepatitis C virus genome in cultured hepatocytes. . Hepatology 38:, 1282–1288. [CrossRef] [PubMed]
    [Google Scholar]
  41. Watashi K. , Ishii N. , Hijikata M. , Inoue D. , Murata T. , Miyanari Y. , Shimotohno K. . ( 2005; ). Cyclophilin B is a functional regulator of hepatitis C virus RNA polymerase. . Mol Cell 19:, 111–122. [CrossRef] [PubMed]
    [Google Scholar]
  42. Zhang L. , Zhang Z. P. , Zhang X. E. , Lin F. S. , Ge F. . ( 2010; ). Quantitative proteomics analysis reveals BAG3 as a potential target to suppress severe acute respiratory syndrome coronavirus replication. . J Virol 84:, 6050–6059. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.034983-0
Loading
/content/journal/jgv/10.1099/vir.0.034983-0
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error