1887

Abstract

Low micromolar, non-cytotoxic concentrations of cyclosporin A (CsA) strongly affected the replication of severe acute respiratory syndrome coronavirus (SARS-CoV), human coronavirus 229E and mouse hepatitis virus in cell culture, as was evident from the strong inhibition of GFP reporter gene expression and a reduction of up to 4 logs in progeny titres. Upon high-multiplicity infection, CsA treatment rendered SARS-CoV RNA and protein synthesis almost undetectable, suggesting an early block in replication. siRNA-mediated knockdown of the expression of the prominent CsA targets cyclophilin A and B did not affect SARS-CoV replication, suggesting either that these specific cyclophilin family members are dispensable or that the reduced expression levels suffice to support replication.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.034983-0
2011-11-01
2020-08-03
Loading full text...

Full text loading...

/deliver/fulltext/jgv/92/11/2542.html?itemId=/content/journal/jgv/10.1099/vir.0.034983-0&mimeType=html&fmt=ahah

References

  1. Bose S., Mathur M., Bates P., Joshi N., Banerjee A. K. 2003; Requirement for cyclophilin A for the replication of vesicular stomatitis virus New Jersey serotype. J Gen Virol 84:1687–1699 [CrossRef][PubMed]
    [Google Scholar]
  2. Briggs C. J., Ott D. E., Coren L. V., Oroszlan S., Tözsér J. 1999; Comparison of the effect of FK506 and cyclosporin A on virus production in H9 cells chronically and newly infected by HIV-1. Arch Virol 144:2151–2160 [CrossRef][PubMed]
    [Google Scholar]
  3. Cervantes-Barragan L., Züst R., Maier R., Sierro S., Janda J., Levy F., Speiser D., Romero P., Rohrlich P. S. et al. 2010; Dendritic cell-specific antigen delivery by coronavirus vaccine vectors induces long-lasting protective antiviral and antitumor immunity. MBio 1:e00171–e00110 [CrossRef][PubMed]
    [Google Scholar]
  4. Chatterji U., Bobardt M., Selvarajah S., Yang F., Tang H., Sakamoto N., Vuagniaux G., Parkinson T., Gallay P. 2009; The isomerase active site of cyclophilin A is critical for hepatitis C virus replication. J Biol Chem 284:16998–17005 [CrossRef][PubMed]
    [Google Scholar]
  5. Chatterji U., Lim P., Bobardt M. D., Wieland S., Cordek D. G., Vuagniaux G., Chisari F., Cameron C. E., Targett-Adams P. et al. 2010; HCV resistance to cyclosporin A does not correlate with a resistance of the NS5A-cyclophilin A interaction to cyclophilin inhibitors. J Hepatol 53:50–56 [CrossRef][PubMed]
    [Google Scholar]
  6. Ciesek S., Steinmann E., Wedemeyer H., Manns M. P., Neyts J., Tautz N., Madan V., Bartenschlager R., von Hahn T., Pietschmann T. 2009; Cyclosporine A inhibits hepatitis C virus nonstructural protein 2 through cyclophilin A. Hepatology 50:1638–1645 [CrossRef][PubMed]
    [Google Scholar]
  7. Coelmont L., Hanoulle X., Chatterji U., Berger C., Snoeck J., Bobardt M., Lim P., Vliegen I., Paeshuyse J. et al. 2010; DEB025 (Alisporivir) inhibits hepatitis C virus replication by preventing a cyclophilin A induced cistrans isomerisation in domain II of NS5A. PLoS ONE 5:e13687 [CrossRef][PubMed]
    [Google Scholar]
  8. Das Sarma J., Scheen E., Seo S. H., Koval M., Weiss S. R. 2002; Enhanced green fluorescent protein expression may be used to monitor murine coronavirus spread in vitro and in the mouse central nervous system. J Neurovirol 8:381–391 [CrossRef][PubMed]
    [Google Scholar]
  9. Davis T. L., Walker J. R., Campagna-Slater V., Finerty P. J., Paramanathan R., Bernstein G., MacKenzie F., Tempel W., Ouyang H. et al. 2010; Structural and biochemical characterization of the human cyclophilin family of peptidyl-prolyl isomerases. PLoS Biol 8:e1000439 [CrossRef][PubMed]
    [Google Scholar]
  10. de Haan C. A., Rottier P. J. 2006; Hosting the severe acute respiratory syndrome coronavirus: specific cell factors required for infection. Cell Microbiol 8:1211–1218 [CrossRef][PubMed]
    [Google Scholar]
  11. Fernandes F., Ansari I. U., Striker R. 2010; Cyclosporine inhibits a direct interaction between cyclophilins and hepatitis C NS5A. PLoS ONE 5:e9815 [CrossRef][PubMed]
    [Google Scholar]
  12. Flisiak R., Horban A., Gallay P., Bobardt M., Selvarajah S., Wiercinska-Drapalo A., Siwak E., Cielniak I., Higersberger J. et al. 2008; The cyclophilin inhibitor Debio-025 shows potent anti-hepatitis C effect in patients coinfected with hepatitis C and human immunodeficiency virus. Hepatology 47:817–826 [CrossRef][PubMed]
    [Google Scholar]
  13. Flisiak R., Feinman S. V., Jablkowski M., Horban A., Kryczka W., Pawlowska M., Heathcote J. E., Mazzella G., Vandelli C. et al. 2009; The cyclophilin inhibitor Debio 025 combined with PEG IFNα2a significantly reduces viral load in treatment-naïve hepatitis C patients. Hepatology 49:1460–1468 [CrossRef][PubMed]
    [Google Scholar]
  14. Gaither L. A., Borawski J., Anderson L. J., Balabanis K. A., Devay P., Joberty G., Rau C., Schirle M., Bouwmeester T., Mickanin C. 2010; Multiple cyclophilins involved in different cellular pathways mediate HCV replication. Virology 397:43–55 [CrossRef][PubMed]
    [Google Scholar]
  15. Goto K., Watashi K., Inoue D., Hijikata M., Shimotohno K. 2009; Identification of cellular and viral factors related to anti-hepatitis C virus activity of cyclophilin inhibitor. Cancer Sci 100:1943–1950 [CrossRef][PubMed]
    [Google Scholar]
  16. Ishii N., Watashi K., Hishiki T., Goto K., Inoue D., Hijikata M., Wakita T., Kato N., Shimotohno K. 2006; Diverse effects of cyclosporine on hepatitis C virus strain replication. J Virol 80:4510–4520 [CrossRef][PubMed]
    [Google Scholar]
  17. Kambara H., Tani H., Mori Y., Abe T., Katoh H., Fukuhara T., Taguwa S., Moriishi K., Matsuura Y. 2011; Involvement of cyclophilin B in the replication of Japanese encephalitis virus. Virology 412:211–219 [CrossRef][PubMed]
    [Google Scholar]
  18. Kamitani W., Narayanan K., Huang C., Lokugamage K., Ikegami T., Ito N., Kubo H., Makino S. 2006; Severe acute respiratory syndrome coronavirus nsp1 protein suppresses host gene expression by promoting host mRNA degradation. Proc Natl Acad Sci U S A 103:12885–12890 [CrossRef][PubMed]
    [Google Scholar]
  19. Kaul A., Stauffer S., Berger C., Pertel T., Schmitt J., Kallis S., Zayas M., Lohmann V., Luban J., Bartenschlager R. 2009; Essential role of cyclophilin A for hepatitis C virus replication and virus production and possible link to polyprotein cleavage kinetics. PLoS Pathog 5:e1000546 [CrossRef][PubMed]
    [Google Scholar]
  20. Knoops K., Kikkert M., Worm S. H., Zevenhoven-Dobbe J. C., van der Meer Y., Koster A. J., Mommaas A. M., Snijder E. J. 2008; SARS-coronavirus replication is supported by a reticulovesicular network of modified endoplasmic reticulum. PLoS Biol 6:e226 [CrossRef][PubMed]
    [Google Scholar]
  21. Knoops K., Swett-Tapia C., van den Worm S. H., Te Velthuis A. J., Koster A. J., Mommaas A. M., Snijder E. J., Kikkert M. 2010; Integrity of the early secretory pathway promotes, but is not required for, severe acute respiratory syndrome coronavirus RNA synthesis and virus-induced remodeling of endoplasmic reticulum membranes. J Virol 84:833–846 [CrossRef][PubMed]
    [Google Scholar]
  22. Kono M., Tatsumi K., Imai A. M., Saito K., Kuriyama T., Shirasawa H. 2008; Inhibition of human coronavirus 229E infection in human epithelial lung cells (L132) by chloroquine: involvement of p38 MAPK and ERK. Antiviral Res 77:150–152 [CrossRef][PubMed]
    [Google Scholar]
  23. Lawitz E., Godofsky E., Rouzier R., Marbury T., Nguyen T., Ke J., Huang M., Praestgaard J., Serra D., Evans T. G. 2011; Safety, pharmacokinetics, and antiviral activity of the cyclophilin inhibitor NIM811 alone or in combination with pegylated interferon in HCV-infected patients receiving 14 days of therapy. Antiviral Res 89:238–245 [CrossRef][PubMed]
    [Google Scholar]
  24. Liu Z., Yang F., Robotham J. M., Tang H. 2009; Critical role of cyclophilin A and its prolyl-peptidyl isomerase activity in the structure and function of the hepatitis C virus replication complex. J Virol 83:6554–6565 [CrossRef][PubMed]
    [Google Scholar]
  25. Luo C., Luo H., Zheng S., Gui C., Yue L., Yu C., Sun T., He P., Chen J., Shen J. 2004; Nucleocapsid protein of SARS coronavirus tightly binds to human cyclophilin A. Biochem Biophys Res Commun 321:557–565 [CrossRef][PubMed]
    [Google Scholar]
  26. Manel N., Hogstad B., Wang Y., Levy D. E., Unutmaz D., Littman D. R. 2010; A cryptic sensor for HIV-1 activates antiviral innate immunity in dendritic cells. Nature 467:214–217 [CrossRef][PubMed]
    [Google Scholar]
  27. Nakagawa M., Sakamoto N., Enomoto N., Tanabe Y., Kanazawa N., Koyama T., Kurosaki M., Maekawa S., Yamashiro T., Chen C.-H. 2004; Specific inhibition of hepatitis C virus replication by cyclosporin A. Biochem Biophys Res Commun 313:42–47 [CrossRef][PubMed]
    [Google Scholar]
  28. Nakagawa M., Sakamoto N., Tanabe Y., Koyama T., Itsui Y., Takeda Y., Chen C. H., Kakinuma S., Oooka S. et al. 2005; Suppression of hepatitis C virus replication by cyclosporin a is mediated by blockade of cyclophilins. Gastroenterology 129:1031–1041 [CrossRef][PubMed]
    [Google Scholar]
  29. Paeshuyse J., Kaul A., De Clercq E., Rosenwirth B., Dumont J. M., Scalfaro P., Bartenschlager R., Neyts J. 2006; The non-immunosuppressive cyclosporin DEBIO-025 is a potent inhibitor of hepatitis C virus replication in vitro . Hepatology 43:761–770 [CrossRef][PubMed]
    [Google Scholar]
  30. Perlman S., Netland J. 2009; Coronaviruses post-SARS: update on replication and pathogenesis. Nat Rev Microbiol 7:439–450 [CrossRef][PubMed]
    [Google Scholar]
  31. Qing M., Yang F., Zhang B., Zou G., Robida J. M., Yuan Z., Tang H., Shi P. Y. 2009; Cyclosporine inhibits flavivirus replication through blocking the interaction between host cyclophilins and viral NS5 protein. Antimicrob Agents Chemother 53:3226–3235 [CrossRef][PubMed]
    [Google Scholar]
  32. Sims A. C., Burkett S. E., Yount B., Pickles R. J. 2008; SARS-CoV replication and pathogenesis in an in vitro model of the human conducting airway epithelium. Virus Res 133:33–44 [CrossRef][PubMed]
    [Google Scholar]
  33. Stockman L. J., Bellamy R., Garner P. 2006; SARS: systematic review of treatment effects. PLoS Med 3:e343 [CrossRef][PubMed]
    [Google Scholar]
  34. te Velthuis A. J., Arnold J. J., Cameron C. E., van den Worm S. H., Snijder E. J. 2010a; The RNA polymerase activity of SARS-coronavirus nsp12 is primer dependent. Nucleic Acids Res 38:203–214 [CrossRef][PubMed]
    [Google Scholar]
  35. te Velthuis A. J., van den Worm S. H., Sims A. C., Baric R. S., Snijder E. J., van Hemert M. J. 2010b; Zn2+ inhibits coronavirus and arterivirus RNA polymerase activity in vitro and zinc ionophores block the replication of these viruses in cell culture. PLoS Pathog 6:e1001176 [CrossRef][PubMed]
    [Google Scholar]
  36. Tong T. R. 2009; Drug targets in severe acute respiratory syndrome (SARS) virus and other coronavirus infections. Infect Disord Drug Targets 9:223–245[PubMed] [CrossRef]
    [Google Scholar]
  37. van Hemert M. J., van den Worm S. H., Knoops K., Mommaas A. M., Gorbalenya A. E., Snijder E. J. 2008; SARS-coronavirus replication/transcription complexes are membrane-protected and need a host factor for activity in vitro . PLoS Pathog 4:e1000054 [CrossRef][PubMed]
    [Google Scholar]
  38. Vincent M. J., Bergeron E., Benjannet S., Erickson B. R., Rollin P. E., Ksiazek T. G., Seidah N. G., Nichol S. T. 2005; Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol J 2:69 [CrossRef][PubMed]
    [Google Scholar]
  39. Vogels M. W., van Balkom B. W., Kaloyanova D. V., Batenburg J. J., Heck A. J., Helms J. B., Rottier P. J., de Haan C. A. 2011; Identification of host factors involved in coronavirus replication by quantitative proteomics analysis. Proteomics 11:64–80 [CrossRef][PubMed]
    [Google Scholar]
  40. Watashi K., Hijikata M., Hosaka M., Yamaji M., Shimotohno K. 2003; Cyclosporin A suppresses replication of hepatitis C virus genome in cultured hepatocytes. Hepatology 38:1282–1288 [CrossRef][PubMed]
    [Google Scholar]
  41. Watashi K., Ishii N., Hijikata M., Inoue D., Murata T., Miyanari Y., Shimotohno K. 2005; Cyclophilin B is a functional regulator of hepatitis C virus RNA polymerase. Mol Cell 19:111–122 [CrossRef][PubMed]
    [Google Scholar]
  42. Zhang L., Zhang Z. P., Zhang X. E., Lin F. S., Ge F. 2010; Quantitative proteomics analysis reveals BAG3 as a potential target to suppress severe acute respiratory syndrome coronavirus replication. J Virol 84:6050–6059 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.034983-0
Loading
/content/journal/jgv/10.1099/vir.0.034983-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error