1887

Abstract

Many herpesviral immediate-early proteins promote their robust lytic phase replications by hijacking the cell cycle machinery. Previously, lytic replication of Epstein–Barr virus (EBV) was found to be concurrent with host cell cycle arrest. In this study, we showed that ectopic expression of EBV immediate-early protein Rta in HEp-2 cells resulted in increased G1/S population, hypophosphorylation of pRb and decreased incorporation of 5-bromo-2′-deoxyuridine. In addition, EBV Rta transcriptionally upregulates the expressions of p21 and 14-3-3σ in HEp-2 cells, 293 cells and nasopharyngeal carcinoma TW01 cells. Although p21 and 14-3-3σ are known targets for p53, Rta-mediated p21 and 14-3-3σ transactivation can be detected in the absence of p53. In addition, results from luciferase reporter assays indicated that direct binding of Rta to either promoter sequences is not required for activation. On the other hand, a special class of Sp1-responsive elements was involved in Rta-mediated transcriptional activation on both promoters. Finally, Rta-induced p21 expression diminished the activity of CDK2/cyclin E complex, and, Rta-induced 14-3-3σ expression sequestered CDK1 and CDK2 in the cytoplasm. Based on these results, we hypothesize that through the disruption of CDK1 and CDK2 activities, EBV Rta might contribute to cell cycle arrest in EBV-infected epithelial cells during viral reactivation.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.034405-0
2012-01-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/jgv/93/1/139.html?itemId=/content/journal/jgv/10.1099/vir.0.034405-0&mimeType=html&fmt=ahah

References

  1. Adamson A. L., Darr D., Holley-Guthrie E., Johnson R. A., Mauser A., Swenson J., Kenney S.. ( 2000;). Epstein–Barr virus immediate-early proteins BZLF1 and BRLF1 activate the ATF2 transcription factor by increasing the levels of phosphorylated p38 and c-Jun N-terminal kinases. . J Virol 74:, 1224–1233. [CrossRef][PubMed]
    [Google Scholar]
  2. Arvanitakis L., Yaseen N., Sharma S.. ( 1995;). Latent membrane protein-1 induces cyclin D2 expression, pRb hyperphosphorylation, and loss of TGF-β1-mediated growth inhibition in EBV-positive B cells. . J Immunol 155:, 1047–1056.[PubMed]
    [Google Scholar]
  3. Blagosklonny M. V.. ( 2006;). Cell senescence: hypertrophic arrest beyond the restriction point. . J Cell Physiol 209:, 592–597. [CrossRef][PubMed]
    [Google Scholar]
  4. Cayrol C., Flemington E. K.. ( 1996;). The Epstein–Barr virus bZIP transcription factor Zta causes G0/G1 cell cycle arrest through induction of cyclin-dependent kinase inhibitors. . EMBO J 15:, 2748–2759.[PubMed]
    [Google Scholar]
  5. Chang L. K., Chung J. Y., Hong Y. R., Ichimura T., Nakao M., Liu S. T.. ( 2005;). Activation of Sp1-mediated transcription by Rta of Epstein–Barr virus via an interaction with MCAF1. . Nucleic Acids Res 33:, 6528–6539. [CrossRef][PubMed]
    [Google Scholar]
  6. Chen Y.-L., Chen Y.-J., Tsai W.-H., Ko Y.-C., Chen J.-Y., Lin S.-F.. ( 2009;). The Epstein–Barr virus replication and transcription activator, Rta/BRLF1, induces cellular senescence in epithelial cells. . Cell Cycle 8:, 58–65. [CrossRef][PubMed]
    [Google Scholar]
  7. Chen Y. J., Tsai W. H., Chen Y. L., Ko Y. C., Chou S. P., Chen J. Y., Lin S. F.. ( 2011;). Epstein–Barr virus (EBV) Rta-mediated EBV and Kaposi’s sarcoma-associated herpesvirus lytic reactivations in 293 cells. . PLoS ONE 6:, e17809. [CrossRef][PubMed]
    [Google Scholar]
  8. Countryman J., Miller G.. ( 1985;). Activation of expression of latent Epstein–Barr herpesvirus after gene transfer with a small cloned subfragment of heterogeneous viral DNA. . Proc Natl Acad Sci U S A 82:, 4085–4089. [CrossRef][PubMed]
    [Google Scholar]
  9. Crawford D. H., Epstein M. A., Bornkamm G. W., Achong B. G., Finerty S., Thompson J. L.. ( 1979;). Biological and biochemical observations on isolates of EB virus from the malignant epithelial cells of two nasopharyngeal carcinomas. . Int J Cancer 24:, 294–302. [CrossRef][PubMed]
    [Google Scholar]
  10. Crook T., Nicholls J. M., Brooks L., O’Nions J., Allday M. J.. ( 2000;). High level expression of ΔN-p63: a mechanism for the inactivation of p53 in undifferentiated nasopharyngeal carcinoma (NPC)?. Oncogene 19:, 3439–3444. [CrossRef][PubMed]
    [Google Scholar]
  11. Darr C. D., Mauser A., Kenney S.. ( 2001;). Epstein–Barr virus immediate-early protein BRLF1 induces the lytic form of viral replication through a mechanism involving phosphatidylinositol-3 kinase activation. . J Virol 75:, 6135–6142. [CrossRef][PubMed]
    [Google Scholar]
  12. de Bruyn Kops A., Knipe D. M.. ( 1988;). Formation of DNA replication structures in herpes virus-infected cells requires a viral DNA binding protein. . Cell 55:, 857–868. [CrossRef][PubMed]
    [Google Scholar]
  13. DiMaio D., Coen D. M.. ( 2001;). Replication strategies of DNA viruses. . In Fields Virology, , 3rd edn., pp. 119–132. Edited by Knipe D. M... Philadelphia, PA:: Lippincott Williams & Wilkins;.
    [Google Scholar]
  14. Ehmann G. L., McLean T. I., Bachenheimer S. L.. ( 2000;). Herpes simplex virus type 1 infection imposes a G(1)/S block in asynchronously growing cells and prevents G(1) entry in quiescent cells. . Virology 267:, 335–349. [CrossRef][PubMed]
    [Google Scholar]
  15. el-Deiry W. S., Tokino T., Velculescu V. E., Levy D. B., Parsons R., Trent J. M., Lin D., Mercer W. E., Kinzler K. W., Vogelstein B.. ( 1993;). WAF1, a potential mediator of p53 tumor suppression. . Cell 75:, 817–825. [CrossRef][PubMed]
    [Google Scholar]
  16. Epstein M. A., Achong B. G., Barr Y. M.. ( 1964;). Virus particles in cultured lymphoblasts from Burkitt’s lymphoma. . Lancet 1:, 702–703. [CrossRef][PubMed]
    [Google Scholar]
  17. Feederle R., Kost M., Baumann M., Janz A., Drouet E., Hammerschmidt W., Delecluse H. J.. ( 2000;). The Epstein–Barr virus lytic program is controlled by the co-operative functions of two transactivators. . EMBO J 19:, 3080–3089. [CrossRef][PubMed]
    [Google Scholar]
  18. Feederle R., Neuhierl B., Bannert H., Geletneky K., Shannon-Lowe C., Delecluse H. J.. ( 2007;). Epstein–Barr virus B95.8 produced in 293 cells shows marked tropism for differentiated primary epithelial cells and reveals interindividual variation in susceptibility to viral infection. . Int J Cancer 121:, 588–594. [CrossRef][PubMed]
    [Google Scholar]
  19. Feng P., Ren E. C., Liu D., Chan S. H., Hu H.. ( 2000;). Expression of Epstein–Barr virus lytic gene BRLF1 in nasopharyngeal carcinoma: potential use in diagnosis. . J Gen Virol 81:, 2417–2423.[PubMed]
    [Google Scholar]
  20. Flemington E. K.. ( 2001;). Herpesvirus lytic replication and the cell cycle: arresting new developments. . J Virol 75:, 4475–4481. [CrossRef][PubMed]
    [Google Scholar]
  21. Gao Z., Krithivas A., Finan J. E., Semmes O. J., Zhou S., Wang Y., Hayward S. D.. ( 1998;). The Epstein–Barr virus lytic transactivator Zta interacts with the helicase-primase replication proteins. . J Virol 72:, 8559–8567.[PubMed]
    [Google Scholar]
  22. Gruffat H., Sergeant A.. ( 1994;). Characterization of the DNA-binding site repertoire for the Epstein–Barr virus transcription factor R. . Nucleic Acids Res 22:, 1172–1178. [CrossRef][PubMed]
    [Google Scholar]
  23. Guo Q., Qian L., Guo L., Shi M., Chen C., Lv X., Yu M., Hu M., Jiang G., Guo N.. ( 2010;). Transactivators Zta and Rta of Epstein–Barr virus promote G0/G1 to S transition in Raji cells: a novel relationship between lytic virus and cell cycle. . Mol Immunol 47:, 1783–1792. [CrossRef][PubMed]
    [Google Scholar]
  24. Henle G., Henle W.. ( 1976;). Epstein–Barr virus-specific IgA serum antibodies as an outstanding feature of nasopharyngeal carcinoma. . Int J Cancer 17:, 1–7. [CrossRef][PubMed]
    [Google Scholar]
  25. Hermeking H., Lengauer C., Polyak K., He T. C., Zhang L., Thiagalingam S., Kinzler K. W., Vogelstein B.. ( 1997;). 14-3-3σ is a p53-regulated inhibitor of G2/M progression. . Mol Cell 1:, 3–11. [CrossRef][PubMed]
    [Google Scholar]
  26. Hiscott J. B., Defendi V.. ( 1979;). Simian virus 40 gene A regulation of cellular DNA synthesis. I. In permissive cells. . J Virol 30:, 590–599.[PubMed]
    [Google Scholar]
  27. Hobbs W. E. II, DeLuca N. A.. ( 1999;). Perturbation of cell cycle progression and cellular gene expression as a function of herpes simplex virus ICP0. . J Virol 73:, 8245–8255.[PubMed]
    [Google Scholar]
  28. Hsu T. Y., Chang Y., Wang P. W., Liu M. Y., Chen M. R., Chen J. Y., Tsai C. H.. ( 2005;). Reactivation of Epstein–Barr virus can be triggered by an Rta protein mutated at the nuclear localization signal. . J Gen Virol 86:, 317–322. [CrossRef][PubMed]
    [Google Scholar]
  29. Imai S., Koizumi S., Sugiura M., Tokunaga M., Uemura Y., Yamamoto N., Tanaka S., Sato E., Osato T.. ( 1994;). Gastric carcinoma: monoclonal epithelial malignant cells expressing Epstein–Barr virus latent infection protein. . Proc Natl Acad Sci U S A 91:, 9131–9135. [CrossRef][PubMed]
    [Google Scholar]
  30. Kudoh A., Fujita M., Kiyono T., Kuzushima K., Sugaya Y., Izuta S., Nishiyama Y., Tsurumi T.. ( 2003;). Reactivation of lytic replication from B cells latently infected with Epstein–Barr virus occurs with high S-phase cyclin-dependent kinase activity while inhibiting cellular DNA replication. . J Virol 77:, 851–861. [CrossRef][PubMed]
    [Google Scholar]
  31. Lee Y. H., Chiu Y. F., Wang W. H., Chang L. K., Liu S. T.. ( 2008;). Activation of the ERK signal transduction pathway by Epstein–Barr virus immediate-early protein Rta. . J Gen Virol 89:, 2437–2446. [CrossRef][PubMed]
    [Google Scholar]
  32. Li Y., Webster-Cyriaque J., Tomlinson C. C., Yohe M., Kenney S.. ( 2004a;). Fatty acid synthase expression is induced by the Epstein–Barr virus immediate-early protein BRLF1 and is required for lytic viral gene expression. . J Virol 78:, 4197–4206. [CrossRef][PubMed]
    [Google Scholar]
  33. Li Y., Mahajan N. P., Webster-Cyriaque J., Bhende P., Hong G. K., Earp H. S., Kenney S.. ( 2004b;). The C-mer gene is induced by Epstein–Barr virus immediate-early protein BRLF1. . J Virol 78:, 11778–11785. [CrossRef][PubMed]
    [Google Scholar]
  34. Makarova O., Kamberov E., Margolis B.. ( 2000;). Generation of deletion and point mutations with one primer in a single cloning step. . Biotechniques 29:, 970–972.[PubMed]
    [Google Scholar]
  35. Mauser A., Holley-Guthrie E., Zanation A., Yarborough W., Kaufmann W., Klingelhutz A., Seaman W. T., Kenney S.. ( 2002;). The Epstein–Barr virus immediate-early protein BZLF1 induces expression of E2F-1 and other proteins involved in cell cycle progression in primary keratinocytes and gastric carcinoma cells. . J Virol 76:, 12543–12552. [CrossRef][PubMed]
    [Google Scholar]
  36. Niedobitek G., Young L. S.. ( 1994;). Epstein–Barr virus persistence and virus-associated tumours. . Lancet 343:, 333–335. [CrossRef][PubMed]
    [Google Scholar]
  37. Noris E., Zannetti C., Demurtas A., Sinclair J., De Andrea M., Gariglio M., Landolfo S.. ( 2002;). Cell cycle arrest by human cytomegalovirus 86-kDa IE2 protein resembles premature senescence. . J Virol 76:, 12135–12148. [CrossRef][PubMed]
    [Google Scholar]
  38. Op De Beeck A., Caillet-Fauquet P.. ( 1997;). Viruses and the cell cycle. . Prog Cell Cycle Res 3:, 1–19. [CrossRef][PubMed]
    [Google Scholar]
  39. Parker G. A., Touitou R., Allday M. J.. ( 2000;). Epstein–Barr virus EBNA3C can disrupt multiple cell cycle checkpoints and induce nuclear division divorced from cytokinesis. . Oncogene 19:, 700–709. [CrossRef][PubMed]
    [Google Scholar]
  40. Petrik D. T., Schmitt K. P., Stinski M. F.. ( 2006;). Inhibition of cellular DNA synthesis by the human cytomegalovirus IE86 protein is necessary for efficient virus replication. . J Virol 80:, 3872–3883. [CrossRef][PubMed]
    [Google Scholar]
  41. Ragoczy T., Miller G.. ( 2001;). Autostimulation of the Epstein–Barr virus BRLF1 promoter is mediated through consensus Sp1 and Sp3 binding sites. . J Virol 75:, 5240–5251. [CrossRef][PubMed]
    [Google Scholar]
  42. Ragoczy T., Heston L., Miller G.. ( 1998;). The Epstein–Barr virus Rta protein activates lytic cycle genes and can disrupt latency in B lymphocytes. . J Virol 72:, 7978–7984.[PubMed]
    [Google Scholar]
  43. Rodriguez A., Jung E. J., Flemington E. K.. ( 2001;). Cell cycle analysis of Epstein–Barr virus-infected cells following treatment with lytic cycle-inducing agents. . J Virol 75:, 4482–4489. [CrossRef][PubMed]
    [Google Scholar]
  44. Sanchez V., Spector D. H.. ( 2008;). Subversion of cell cycle regulatory pathways. . Curr Top Microbiol Immunol 325:, 243–262. [CrossRef][PubMed]
    [Google Scholar]
  45. Sato Y., Tsurumi T.. ( 2010;). Noise cancellation: viral fine tuning of the cellular environment for its own genome replication. . PLoS Pathog 6:, e1001158. [CrossRef][PubMed]
    [Google Scholar]
  46. Sinclair A. J., Palmero I., Peters G., Farrell P. J.. ( 1994;). EBNA-2 and EBNA-LP cooperate to cause G0 to G1 transition during immortalization of resting human B lymphocytes by Epstein–Barr virus. . EMBO J 13:, 3321–3328.[PubMed]
    [Google Scholar]
  47. Sun C. C., Thorley-Lawson D. A.. ( 2007;). Plasma cell-specific transcription factor XBP-1s binds to and transactivates the Epstein–Barr virus BZLF1 promoter. . J Virol 81:, 13566–13577. [CrossRef][PubMed]
    [Google Scholar]
  48. Swenson J. J., Mauser A. E., Kaufmann W. K., Kenney S. C.. ( 1999;). The Epstein–Barr virus protein BRLF1 activates S phase entry through E2F1 induction. . J Virol 73:, 6540–6550.[PubMed]
    [Google Scholar]
  49. Takada K.. ( 1984;). Cross-linking of cell surface immunoglobulins induces Epstein–Barr virus in Burkitt lymphoma lines. . Int J Cancer 33:, 27–32. [CrossRef][PubMed]
    [Google Scholar]
  50. Tao Q., Srivastava G., Chan A. C., Ho F. C.. ( 1995;). Epstein–Barr-virus-infected nasopharyngeal intraepithelial lymphocytes. . Lancet 345:, 1309–1310. [CrossRef][PubMed]
    [Google Scholar]
  51. Vereide D. T., Sugden B.. ( 2011;). Lymphomas differ in their dependence on Epstein–Barr virus. . Blood 117:, 1977–1985. [CrossRef][PubMed]
    [Google Scholar]
  52. Wiebusch L., Hagemeier C.. ( 2001;). The human cytomegalovirus immediate early 2 protein dissociates cellular DNA synthesis from cyclin-dependent kinase activation. . EMBO J 20:, 1086–1098. [CrossRef][PubMed]
    [Google Scholar]
  53. Wu F. Y., Chen H., Wang S. E., ApRhys C. M., Liao G., Fujimuro M., Farrell C. J., Huang J., Hayward S. D., Hayward G. S.. ( 2003;). CCAAT/enhancer binding protein alpha interacts with ZTA and mediates ZTA-induced p21(CIP-1) accumulation and G(1) cell cycle arrest during the Epstein–Barr virus lytic cycle. . J Virol 77:, 1481–1500. [CrossRef][PubMed]
    [Google Scholar]
  54. Zalani S., Holley-Guthrie E., Kenney S.. ( 1996;). Epstein–Barr viral latency is disrupted by the immediate-early BRLF1 protein through a cell-specific mechanism. . Proc Natl Acad Sci U S A 93:, 9194–9199. [CrossRef][PubMed]
    [Google Scholar]
  55. zur Hausen H., O’Neill F. J., Freese U. K., Hecker E.. ( 1978;). Persisting oncogenic herpesvirus induced by the tumour promotor TPA. . Nature 272:, 373–375. [CrossRef][PubMed]
    [Google Scholar]
  56. Zydek M., Hagemeier C., Wiebusch L.. ( 2010;). Cyclin-dependent kinase activity controls the onset of the HCMV lytic cycle. . PLoS Pathog 6:, e1001096. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.034405-0
Loading
/content/journal/jgv/10.1099/vir.0.034405-0
Loading

Data & Media loading...

Supplements

Supplementary Table 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error