1887

Abstract

In response to potential bioterrorism with smallpox, members of the Japanese Self-Defense Forces were vaccinated with vaccinia virus (VACV) strain LC16m8, an attenuated smallpox vaccine derived from VACV strain Lister. The serological response induced by LC16m8 to four virion-surface proteins and the intracellular mature virus (IMV) and extracellular enveloped virus (EEV) was investigated. LC16m8 induced antibody response against the IMV protein A27 and the EEV protein A56. LC16m8 also induced IMV-neutralizing antibodies, but unlike the VACV strain Lister, did not induce either EEV-neutralizing antibody or antibody to EEV protein B5, except after revaccination. Given that B5 is the only target for EEV-neutralizing antibody and that neutralization of both IMV and EEV give optimal protection against orthopoxvirus challenge, these data suggest that immunity induced by LC16m8 might be less potent than that deriving from strain Lister. This potential disadvantage should be balanced against the advantage of the greater safety of LC16m8.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.034207-0
2011-10-01
2020-01-22
Loading full text...

Full text loading...

/deliver/fulltext/jgv/92/10/2405.html?itemId=/content/journal/jgv/10.1099/vir.0.034207-0&mimeType=html&fmt=ahah

References

  1. Aguado B., Selmes I. P., Smith G. L.. ( 1992; ). Nucleotide sequence of 21.8 kbp of variola major virus strain Harvey and comparison with vaccinia virus. . J Gen Virol 73:, 2887–2902. [CrossRef] [PubMed]
    [Google Scholar]
  2. Bell E., Shamim M., Whitbeck J. C., Sfyroera G., Lambris J. D., Isaacs S. N.. ( 2004; ). Antibodies against the extracellular enveloped virus B5R protein are mainly responsible for the EEV neutralizing capacity of vaccinia immune globulin. . Virology 325:, 425–431. [CrossRef] [PubMed]
    [Google Scholar]
  3. Benhnia M. R., McCausland M. M., Moyron J., Laudenslager J., Granger S., Rickert S., Koriazova L., Kubo R., Kato S., Crotty S.. ( 2009; ). Vaccinia virus extracellular enveloped virion neutralization in vitro and protection in vivo depend on complement. . J Virol 83:, 1201–1215. [CrossRef] [PubMed]
    [Google Scholar]
  4. Boulter E. A., Appleyard G.. ( 1973; ). Differences between extracellular and intracellular forms of poxvirus and their implications. . Prog Med Virol 16:, 86–108.[PubMed]
    [Google Scholar]
  5. Davies D. H., McCausland M. M., Valdez C., Huynh D., Hernandez J. E., Mu Y., Hirst S., Villarreal L., Felgner P. L., Crotty S.. ( 2005; ). Vaccinia virus H3L envelope protein is a major target of neutralizing antibodies in humans and elicits protection against lethal challenge in mice. . J Virol 79:, 11724–11733. [CrossRef] [PubMed]
    [Google Scholar]
  6. Davies D. H., Molina D. M., Wrammert J., Miller J., Hirst S., Mu Y., Pablo J., Unal B., Nakajima-Sasaki R. et al. & other authors ( 2007; ). Proteome-wide analysis of the serological response to vaccinia and smallpox. . Proteomics 7:, 1678–1686. [CrossRef] [PubMed]
    [Google Scholar]
  7. Earl P. L., Americo J. L., Wyatt L. S., Eller L. A., Whitbeck J. C., Cohen G. H., Eisenberg R. J., Hartmann C. J., Jackson D. L. et al. & other authors ( 2004; ). Immunogenicity of a highly attenuated MVA smallpox vaccine and protection against monkeypox. . Nature 428:, 182–185. [CrossRef] [PubMed]
    [Google Scholar]
  8. Empig C., Kenner J. R., Perret-Gentil M., Youree B. E., Bell E., Chen A., Gurwith M., Higgins K., Lock M., Rice A.. ( 2006; ). Highly attenuated smallpox vaccine protects rabbits and mice against pathogenic orthopoxvirus challenge. . Vaccine 24:, 3686–3694. [CrossRef] [PubMed]
    [Google Scholar]
  9. Engelstad M., Smith G. L.. ( 1993; ). The vaccinia virus 42-kDa envelope protein is required for the envelopment and egress of extracellular virus and for virus virulence. . Virology 194:, 627–637. [CrossRef] [PubMed]
    [Google Scholar]
  10. Engelstad M., Howard S. T., Smith G. L.. ( 1992; ). A constitutively expressed vaccinia gene encodes a 42-kDa glycoprotein related to complement control factors that forms part of the extracellular virus envelope. . Virology 188:, 801–810. [CrossRef] [PubMed]
    [Google Scholar]
  11. Esposito J. J., Sammons S. A., Frace A. M., Osborne J. D., Olsen-Rasmussen M., Zhang M., Govil D., Damon I. K., Kline R. et al. & other authors ( 2006; ). Genome sequence diversity and clues to the evolution of variola (smallpox) virus. . Science 313:, 807–812. [CrossRef] [PubMed]
    [Google Scholar]
  12. Fenner F., Henderson D. A., Arita I., Jezek Z., Ladnyi I. D.. ( 1988; ). Smallpox and its Eradication. Geneva:: World Health Organisation;.
    [Google Scholar]
  13. Gordon S. N., Cecchinato V., Andresen V., Heraud J. M., Hryniewicz A., Parks R. W., Venzon D., Chung H. K., Karpova T. et al. & other authors ( 2011; ). Smallpox vaccine safety is dependent on T cells and not B cells. . J Infect Dis 203:, 1043–1053. [CrossRef] [PubMed]
    [Google Scholar]
  14. Hashizume S., Yoshizawa H., Morita M., Suzuki K.. ( 1985; ). Properties of attenuated mutant of vaccinia virus, LC16m8, derived from Lister strain. . In Vaccinia Viruses as Vectors for Vaccine Antigens, pp. 87–99. Edited by Quinnan G. V... New York:: Elsevier Science Publishing Co;.
    [Google Scholar]
  15. Isaacs S. N., Wolffe E. J., Payne L. G., Moss B.. ( 1992; ). Characterization of a vaccinia virus-encoded 42-kilodalton class I membrane glycoprotein component of the extracellular virus envelope. . J Virol 66:, 7217–7224.[PubMed]
    [Google Scholar]
  16. Kenner J., Cameron F., Empig C., Jobes D. V., Gurwith M.. ( 2006; ). LC16m8: an attenuated smallpox vaccine. . Vaccine 24:, 7009–7022. [CrossRef] [PubMed]
    [Google Scholar]
  17. Kidokoro M., Tashiro M., Shida H.. ( 2005; ). Genetically stable and fully effective smallpox vaccine strain constructed from highly attenuated vaccinia LC16m8. . Proc Natl Acad Sci U S A 102:, 4152–4157. [CrossRef] [PubMed]
    [Google Scholar]
  18. Lane J. M., Ruben F. L., Neff J. M., Millar J. D.. ( 1969; ). Complications of smallpox vaccination, 1968 – National surveillance in the United States. . N Engl J Med 281:, 1201–1208. [CrossRef] [PubMed]
    [Google Scholar]
  19. Law M., Pütz M. M., Smith G. L.. ( 2005; ). An investigation of the therapeutic value of vaccinia-immune IgG in a mouse pneumonia model. . J Gen Virol 86:, 991–1000. [CrossRef] [PubMed]
    [Google Scholar]
  20. Massung R. F., Liu L. I., Qi J., Knight J. C., Yuran T. E., Kerlavage A. R., Parsons J. M., Venter J. C., Esposito J. J.. ( 1994; ). Analysis of the complete genome of smallpox variola major virus strain Bangladesh-1975. . Virology 201:, 215–240. [CrossRef] [PubMed]
    [Google Scholar]
  21. Meseda C. A., Mayer A. E., Kumar A., Garcia A. D., Campbell J., Listrani P., Manischewitz J., King L. R., Golding H. et al. & other authors ( 2009; ). Comparative evaluation of the immune responses and protection engendered by LC16m8 and Dryvax smallpox vaccines in a mouse model. . Clin Vaccine Immunol 16:, 1261–1271. [CrossRef] [PubMed]
    [Google Scholar]
  22. Midgley C. M., Putz M. M., Weber J. N., Smith G. L.. ( 2008; ). Vaccinia virus strain NYVAC induces substantially lower and qualitatively different human antibody responses compared with strains Lister and Dryvax. . J Gen Virol 89:, 2992–2997. [CrossRef] [PubMed]
    [Google Scholar]
  23. Moss B.. ( 2011; ). Smallpox vaccines: targets of protective immunity. . Immunol Rev 239:, 8–26. [CrossRef] [PubMed]
    [Google Scholar]
  24. Parrino J., McCurdy L. H., Larkin B. D., Gordon I. J., Rucker S. E., Enama M. E., Koup R. A., Roederer M., Bailer R. T. et al. & other authors ( 2007; ). Safety, immunogenicity and efficacy of modified vaccinia Ankara (MVA) against Dryvax challenge in vaccinia-naïve and vaccinia-immune individuals. . Vaccine 25:, 1513–1525. [CrossRef] [PubMed]
    [Google Scholar]
  25. Pütz M. M., Alberini I., Midgley C. M., Manini I., Montomoli E., Smith G. L.. ( 2005; ). Prevalence of antibodies to Vaccinia virus after smallpox vaccination in Italy. . J Gen Virol 86:, 2955–2960. [CrossRef] [PubMed]
    [Google Scholar]
  26. Pütz M. M., Midgley C. M., Law M., Smith G. L.. ( 2006; ). Quantification of antibody responses against multiple antigens of the two infectious forms of Vaccinia virus provides a benchmark for smallpox vaccination. . Nat Med 12:, 1310–1315. [CrossRef] [PubMed]
    [Google Scholar]
  27. Roberts K. L., Smith G. L.. ( 2008; ). Vaccinia virus morphogenesis and dissemination. . Trends Microbiol 16:, 472–479. [CrossRef] [PubMed]
    [Google Scholar]
  28. Saijo M., Ami Y., Suzaki Y., Nagata N., Iwata N., Hasegawa H., Ogata M., Fukushi S., Mizutani T. et al. & other authors ( 2006; ). LC16m8, a highly attenuated vaccinia virus vaccine lacking expression of the membrane protein B5R, protects monkeys from monkeypox. . J Virol 80:, 5179–5188. [CrossRef] [PubMed]
    [Google Scholar]
  29. Saito T., Fujii T., Kanatani Y., Saijo M., Morikawa S., Yokote H., Takeuchi T., Kuwabara N.. ( 2009; ). Clinical and immunological response to attenuated tissue-cultured smallpox vaccine LC16m8. . JAMA 301:, 1025–1033. [CrossRef] [PubMed]
    [Google Scholar]
  30. Shchelkunov S. N., Blinov V. M., Resenchuk S. M., Totmenin A. V., Olenina L. V., Chirikova G. B., Sandakhchiev L. S.. ( 1994; ). Analysis of the nucleotide sequence of 53 kbp from the right terminus of the genome of variola major virus strain India-1967. . Virus Res 34:, 207–236. [CrossRef] [PubMed]
    [Google Scholar]
  31. Shchelkunov S. N., Massung R. F., Esposito J. J.. ( 1995; ). Comparison of the genome DNA sequences of Bangladesh-1975 and India-1967 variola viruses. . Virus Res 36:, 107–118. [CrossRef] [PubMed]
    [Google Scholar]
  32. Stickl H., Hochstein-Mintzel V.. ( 1971; ). [Intracutaneous smallpox vaccination with a weak pathogenic vaccinia virus (“MVA virus”)]. . Munch Med Wochenschr 113:, 1149–1153 (in German).[PubMed]
    [Google Scholar]
  33. Takahashi-Nishimaki F., Funahashi S., Miki K., Hashizume S., Sugimoto M.. ( 1991; ). Regulation of plaque size and host range by a vaccinia virus gene related to complement system proteins. . Virology 181:, 158–164. [CrossRef] [PubMed]
    [Google Scholar]
  34. Tartaglia J., Perkus M. E., Taylor J., Norton E. K., Audonnet J. C., Cox W. I., Davis S. W., van der Hoeven J., Meignier B., Riviere M.. ( 1992; ). NYVAC: a highly attenuated strain of vaccinia virus. . Virology 188:, 217–232. [CrossRef] [PubMed]
    [Google Scholar]
  35. Wolffe E. J., Isaacs S. N., Moss B.. ( 1993; ). Deletion of the vaccinia virus B5R gene encoding a 42-kilodalton membrane glycoprotein inhibits extracellular virus envelope formation and dissemination. . J Virol 67:, 4732–4741.[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.034207-0
Loading
/content/journal/jgv/10.1099/vir.0.034207-0
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error