1887

Abstract

Despite the recent discovery of novel bocaviruses from porcine samples, their genetic evolution and diversity are poorly understood. This study reports the identification and complete genome characterization of two novel parvoviruses, porcine bocavirus 3 (PBoV3) and porcine bocavirus 4 (PBoV4), from various porcine tissues/samples, displaying marked intra- and inter-host genetic diversity, with recombination events. Bocaviruses were detected by PCR among 16.5 % (55/333) of porcine samples (lymph nodes, serum, nasopharyngeal and faecal samples) from healthy, sick or deceased pigs from farms and a slaughterhouse in Hong Kong. As marked nucleotide polymorphisms were observed in the partial VP1 sequences, complete VP1 genes from one nasopharyngeal and three faecal specimens were cloned and sequenced, which suggested the presence of two different bocaviruses and demonstrated significant intra- and inter-host genetic diversity. Complete genome sequences revealed the presence of two bocaviruses, PBoV3 and PBoV4, in a faecal and nasopharyngeal specimen, respectively, with two genotypes, PBoV4-1 and PBoV4-2, in the latter. Their genomes encoded three ORFs, characteristic of bocaviruses. Phylogenetic analysis showed that they were distantly related to other bocaviruses, forming a distinct cluster within the genus. Recombination analysis showed possible recombination events among VP1 sequences of PBoV4 strains from a faecal specimen, with two breakpoints identified (with a 68 and 71 bp region), suggesting that different strains/variants within the same host could have arisen from recombination. This is the first report describing marked sequence diversity and the co-existence of two viruses of the family within the same host, which may have originated from and, in turn, facilitated recombination.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.033688-0
2011-09-01
2020-01-18
Loading full text...

Full text loading...

/deliver/fulltext/jgv/92/9/2047.html?itemId=/content/journal/jgv/10.1099/vir.0.033688-0&mimeType=html&fmt=ahah

References

  1. Allander T., Tammi M. T., Eriksson M., Bjerkner A., Tiveljung-Lindell A., Andersson B.. ( 2005;). Cloning of a human parvovirus by molecular screening of respiratory tract samples. . Proc Natl Acad Sci U S A 102:, 12891–12896. [CrossRef].[PubMed]
    [Google Scholar]
  2. Apweiler R., Attwood T. K., Bairoch A., Bateman A., Birney E., Biswas M., Bucher P., Cerutti L., Corpet F. et al. ( 2001;). The InterPro database, an integrated documentation resource for protein families, domains and functional sites. . Nucleic Acids Res 29:, 37–40. [CrossRef].[PubMed]
    [Google Scholar]
  3. Arthur J. L., Higgins G. D., Davidson G. P., Givney R. C., Ratcliff R. M.. ( 2009;). A novel bocavirus associated with acute gastroenteritis in Australian children. . PLoS Pathog 5:, e1000391. [CrossRef].[PubMed]
    [Google Scholar]
  4. Battilani M., Scagliarini A., Ciulli S., Morganti L., Prosperi S.. ( 2006;). High genetic diversity of the VP2 gene of a canine parvovirus strain detected in a domestic cat. . Virology 352:, 22–26. [CrossRef].[PubMed]
    [Google Scholar]
  5. Binn L. N., Lazar E. C., Eddy G. A., Kajima M.. ( 1970;). Recovery and characterization of a minute virus of canines. . Infect Immun 1:, 503–508.[PubMed]
    [Google Scholar]
  6. Blomström A. L., Belák S., Fossum C., McKillen J., Allan G., Wallgren P., Berg M.. ( 2009;). Detection of a novel porcine boca-like virus in the background of porcine circovirus type 2 induced postweaning multisystemic wasting syndrome. . Virus Res 146:, 125–129. [CrossRef].[PubMed]
    [Google Scholar]
  7. Cheng W.-X., Li J.-S., Huang C.-P., Yao D.-P., Liu N., Cui S.-X., Jin Y., Duan Z.-J.. ( 2010;). Identification and nearly full-length genome characterization of novel porcine bocaviruses. . PLoS ONE 5:, e13583. [CrossRef].[PubMed]
    [Google Scholar]
  8. Cheung A. K., Wu G., Wang D., Bayles D. O., Lager K. M., Vincent A. L.. ( 2010;). Identification and molecular cloning of a novel porcine parvovirus. . Arch Virol 155:, 801–806. [CrossRef].[PubMed]
    [Google Scholar]
  9. Duffy S., Shackelton L. A., Holmes E. C.. ( 2008;). Rates of evolutionary change in viruses: patterns and determinants. . Nat Rev Genet 9:, 267–276. [CrossRef].[PubMed]
    [Google Scholar]
  10. Fauquet C. M., Mayo M. A., Maniloff J., Desselberger U., Ball L. A.. (editors) ( 2005;). Virus Taxonomy: Classification and Nomenclature of Viruses. Eighth Report of the International Committee on Taxonomy of Viruses. San Diego, CA:: Elsevier Academic Press;.
    [Google Scholar]
  11. Guindon S., Gascuel O.. ( 2003;). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. . Syst Biol 52:, 696–704. [CrossRef].[PubMed]
    [Google Scholar]
  12. Hijikata M., Abe K., Win K. M., Shimizu Y. K., Keicho N., Yoshikura H.. ( 2001;). Identification of new parvovirus DNA sequence in swine sera from Myanmar. . Jpn J Infect Dis 54:, 244–245.[PubMed]
    [Google Scholar]
  13. Hoelzer K., Shackelton L. A., Holmes E. C., Parrish C. R.. ( 2008;). Within-host genetic diversity of endemic and emerging parvoviruses of dogs and cats. . J Virol 82:, 11096–11105. [CrossRef].[PubMed]
    [Google Scholar]
  14. Hogan A., Faust E. A.. ( 1986;). Nonhomologous recombination in the parvovirus chromosome: role for a CTATTTCT motif. . Mol Cell Biol 6:, 3005–3009.[PubMed]
    [Google Scholar]
  15. Hokynar K., Söderlund-Venermo M., Pesonen M., Ranki A., Kiviluoto O., Partio E. K., Hedman K.. ( 2002;). A new parvovirus genotype persistent in human skin. . Virology 302:, 224–228. [CrossRef].[PubMed]
    [Google Scholar]
  16. Huang L., Zhai S.-L., Cheung A. K., Zhang H.-B., Long J.-X., Yuan S.-S.. ( 2010;). Detection of a novel porcine parvovirus, PPV4, in Chinese swine herds. . Virol J 7:, 333. [CrossRef].[PubMed]
    [Google Scholar]
  17. Kapoor A., Slikas E., Simmonds P., Chieochansin T., Naeem A., Shaukat S., Alam M. M., Sharif S., Angez M. et al. ( 2009;). A newly identified bocavirus species in human stool. . J Infect Dis 199:, 196–200. [CrossRef].[PubMed]
    [Google Scholar]
  18. Kapoor A., Mehta N., Esper F., Poljsak-Prijatelj M., Quan P. L., Qaisar N., Delwart E., Lipkin W. I.. ( 2010a;). Identification and characterization of a new bocavirus species in gorillas. . PLoS ONE 5:, e11948. [CrossRef].[PubMed]
    [Google Scholar]
  19. Kapoor A., Simmonds P., Slikas E., Li L., Bodhidatta L., Sethabutr O., Triki H., Bahri O., Oderinde B. S. et al. ( 2010b; ). Human bocaviruses are highly diverse, dispersed, recombination prone, and prevalent in enteric infections. . J Infect Dis 201:, 1633–1643. [CrossRef].[PubMed]
    [Google Scholar]
  20. Keane T. M., Creevey C. J., Pentony M. M., Naughton T. J., Mclnerney J. O.. ( 2006;). Assessment of methods for amino acid matrix selection and their use on empirical data shows that ad hoc assumptions for choice of matrix are not justified. . BMC Evol Biol 6:, 29. [CrossRef].[PubMed]
    [Google Scholar]
  21. Lau S. K., Woo P. C., Li K. S., Huang Y., Tsoi H-W., Wong B. H., Wong S. S., Leung S.-Y., Chan K.-H., Yuen K.-Y.. ( 2005;). Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. . Proc Natl Acad Sci U S A 102:, 14040–14045. [CrossRef].[PubMed]
    [Google Scholar]
  22. Lau S. K. P., Woo P. C. Y., Li K. S. M., Huang Y., Wang M., Lam C. S. F., Xu H., Guo R., Chan K.-H. et al. ( 2007a;). Complete genome sequence of bat coronavirus HKU2 from Chinese horseshoe bats revealed a much smaller spike gene with a different evolutionary lineage from the rest of the genome. . Virology 367:, 428–439. [CrossRef].[PubMed]
    [Google Scholar]
  23. Lau S. K. P., Yip C. C. Y., Que T.-L., Lee R. A., Au-Yeung R. K., Zhou B. P., So L.-Y., Lau Y.-L., Chan K.-H. et al. ( 2007b; ). Clinical and molecular epidemiology of human bocavirus in respiratory and fecal samples from children in Hong Kong. . J Infect Dis 196:, 986–993. [CrossRef].[PubMed]
    [Google Scholar]
  24. Lau S. K., Woo P. C., Tse H., Fu C. T., Au W.-K., Chen X.-C., Tsoi H.-W., Tsang T. H., Chan J. S. et al. ( 2008;). Identification of novel porcine and bovine parvoviruses closely related to human parvovirus 4. . J Gen Virol 89:, 1840–1848. [CrossRef].[PubMed]
    [Google Scholar]
  25. Lau S. K., Li K. S., Huang Y., Shek C.-T., Tse H., Wang M., Choi G. K., Xu H., Lam C. S. et al. ( 2010a;). Ecoepidemiology and complete genome comparison of different strains of severe acute respiratory syndrome-related Rhinolophus bat coronavirus in China reveal bats as a reservoir for acute, self-limiting infection that allows recombination events. . J Virol 84:, 2808–2819. [CrossRef].[PubMed]
    [Google Scholar]
  26. Lau S. K., Poon R. W., Wong B. H., Wang M., Huang Y., Xu H., Guo R., Li K. S., Gao K. et al. ( 2010b; ). Coexistence of different genotypes in the same bat and serological characterization of Rousettus bat coronavirus HKU9 belonging to a novel Betacoronavirus subgroup. . J Virol 84:, 11385–11394. [CrossRef].[PubMed]
    [Google Scholar]
  27. Li W., Shi Z., Yu M., Ren W., Smith C., Epstein J. H., Wang H., Crameri G., Hu Z. et al. ( 2005;). Bats are natural reservoirs of SARS-like coronaviruses. . Science 310:, 676–679. [CrossRef].[PubMed]
    [Google Scholar]
  28. Lole K. S., Bollinger R. C., Paranjape R. S., Gadkari D., Kulkarni S. S., Novak N. G., Ingersoll R., Sheppard H. W., Ray S. C.. ( 1999;). Full-length human immunodeficiency virus type 1 genomes from subtype C-infected seroconverters in India, with evidence of intersubtype recombination. . J Virol 73:, 152–160.[PubMed]
    [Google Scholar]
  29. Mochizuki M., Hashimoto M., Hajima T., Takiguchi M., Hashimoto A., Une Y., Roerink F., Ohshima T., Parrish C. R., Carmichael L. E.. ( 2002;). Virologic and serologic identification of minute virus of canines (canine parvovirus type 1) from dogs in Japan. . J Clin Microbiol 40:, 3993–3998. [CrossRef].[PubMed]
    [Google Scholar]
  30. Nguyen Q. T., Wong S., Heegaard E. D., Brown K. E.. ( 2002;). Identification and characterization of a second novel human erythrovirus variant, A6. . Virology 301:, 374–380. [CrossRef].[PubMed]
    [Google Scholar]
  31. Servant A., Laperche S., Lallemand F., Marinho V., De Saint Maur G., Meritet J. F., Garbarg-Chenon A.. ( 2002;). Genetic diversity within human erythroviruses: identification of three genotypes. . J Virol 76:, 9124–9134. [CrossRef].[PubMed]
    [Google Scholar]
  32. Shackelton L. A., Parrish C. R., Truyen U., Holmes E. C.. ( 2005;). High rate of viral evolution associated with the emergence of carnivore parvovirus. . Proc Natl Acad Sci U S A 102:, 379–384. [CrossRef].[PubMed]
    [Google Scholar]
  33. Shade R. O., Blundell M. C., Cotmore S. F., Tattersall P., Astell C. R.. ( 1986;). Nucleotide sequence and genome organization of human parvovirus B19 isolated from the serum of a child during aplastic crisis. . J Virol 58:, 921–936.[PubMed]
    [Google Scholar]
  34. Sharp C. P., LeBreton M., Kantola K., Nana A., Diffo J. D., Djoko C. F., Tamoufe U., Kiyang J. A., Babila T. G. et al. ( 2010;). Widespread infection with homologues of human parvoviruses B19, PARV4, and human bocavirus of chimpanzees and gorillas in the wild. . J Virol 84:, 10289–10296. [CrossRef].[PubMed]
    [Google Scholar]
  35. Sloots T. P., McErlean P., Speicher D. J., Arden K. E., Nissen M. D., Mackay I. M.. ( 2006;). Evidence of human coronavirus HKU1 and human bocavirus in Australian children. . J Clin Virol 35:, 99–102. [CrossRef].[PubMed]
    [Google Scholar]
  36. Söderlund-Venermo M., Lahtinen A., Jartti T., Hedman L., Kemppainen K., Lehtinen P., Allander T., Ruuskanen O., Hedman K.. ( 2009;). Clinical assessment and improved diagnosis of bocavirus-induced wheezing in children, Finland. . Emerg Infect Dis 15:, 1423–1430. [CrossRef].[PubMed]
    [Google Scholar]
  37. Soucie J. M., Erdman D. D., Evatt B. L., Anderson L. J., Török T. J., El-Jamil M., Barnhart E., Tepper M., Burrill H. N. et al. ( 2000;). Investigation of porcine parvovirus among persons with hemophilia receiving Hyate:C porcine factor VIII concentrate. . Transfusion 40:, 708–711. [CrossRef].[PubMed]
    [Google Scholar]
  38. Spahn G. J., Mohanty S. B., Hetrick F. M.. ( 1966;). Experimental infection of calves with hemadsorbing enteric (HADEN) virus. . Cornell Vet 56:, 377–386.[PubMed]
    [Google Scholar]
  39. Storz J., Leary J. J., Carlson J. H., Bates R. C.. ( 1978;). Parvoviruses associated with diarrhea in calves. . J Am Vet Med Assoc 173:, 624–627.[PubMed]
    [Google Scholar]
  40. Sun Y., Chen A. Y., Cheng F., Guan W., Johnson F. B., Qiu J.. ( 2009;). Molecular characterization of infectious clones of the minute virus of canines reveals unique features of bocaviruses. . J Virol 83:, 3956–3967. [CrossRef].[PubMed]
    [Google Scholar]
  41. Woo P. C., Lau S. K., Chu C.-M., Chan K.-H., Tsoi H.-W., Huang Y., Wong B. H., Poon R. W., Cai J. J. et al. ( 2005;). Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia. . J Virol 79:, 884–895. [CrossRef].[PubMed]
    [Google Scholar]
  42. Woo P. C., Lau S. K., Li K. S., Poon R. W., Wong B. H., Tsoi H.-W., Yip B. C., Huang Y., Chan K.-H., Yuen K.-Y.. ( 2006;). Molecular diversity of coronaviruses in bats. . Virology 351:, 180–187. [CrossRef].[PubMed]
    [Google Scholar]
  43. Zeng S., Wang D., Fang L., Ma J., Song T., Zhang R., Chen H., Xiao S.. ( 2011;). Complete coding sequences and phylogenetic analysis of porcine bocavirus. . J Gen Virol 92:, 784–788. [CrossRef].[PubMed]
    [Google Scholar]
  44. Zhai S., Yue C., Wei Z., Long J., Ran D., Lin T., Deng Y., Huang L., Sun L. et al. ( 2010;). High prevalence of a novel porcine bocavirus in weanling piglets with respiratory tract symptoms in China. . Arch Virol 155:, 1313–1317. [CrossRef].[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.033688-0
Loading
/content/journal/jgv/10.1099/vir.0.033688-0
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error