1887

Abstract

Our earlier study has demonstrated that hepatitis C virus (HCV)-associated cholesterol plays a key role in virus infectivity. In this study, the structural requirement of sterols for infectivity, buoyant density and apolipoprotein association of HCV was investigated further. We removed cholesterol from virions with methyl β-cyclodextrin, followed by replenishment with 10 exogenous cholesterol analogues. Among the sterols tested, dihydrocholesterol and coprostanol maintained the buoyant density of HCV and its infectivity, and 7-dehydrocholesterol restored the physical appearance of HCV, but suppressed its infectivity. Other sterol variants with a 3β-hydroxyl group or with an aliphatic side chain did not restore density or infectivity. We also provide evidence that virion-associated cholesterol contributes to the interaction between HCV particles and apolipoprotein E. The molecular basis for the effects of different sterols on HCV infectivity is discussed.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.032391-0
2011-09-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/jgv/92/9/2082.html?itemId=/content/journal/jgv/10.1099/vir.0.032391-0&mimeType=html&fmt=ahah

References

  1. Aizaki H., Morikawa K., Fukasawa M., Hara H., Inoue Y., Tani H., Saito K., Nishijima M., Hanada K. et al. ( 2008;). Critical role of virion-associated cholesterol and sphingolipid in hepatitis C virus infection. . J Virol 82:, 5715–5724. [CrossRef].[PubMed].
    [Google Scholar]
  2. Akazawa D., Date T., Morikawa K., Murayama A., Miyamoto M., Kaga M., Barth H., Baumert T. F., Dubuisson J., Wakita T.. ( 2007;). CD81 expression is important for the permissiveness of Huh7 cell clones for heterogeneous hepatitis C virus infection. . J Virol 81:, 5036–5045. [CrossRef].[PubMed].
    [Google Scholar]
  3. André P., Komurian-Pradel F., Deforges S., Perret M., Berland J. L., Sodoyer M., Pol S., Bréchot C., Paranhos-Baccalà G., Lotteau V.. ( 2002;). Characterization of low- and very-low-density hepatitis C virus RNA-containing particles. . J Virol 76:, 6919–6928. [CrossRef].[PubMed].
    [Google Scholar]
  4. Bartenschlager R., Penin F., Lohmann V., André P.. ( 2011;). Assembly of infectious hepatitis C virus particles. . Trends Microbiol 19:, 95–103. [CrossRef].[PubMed].
    [Google Scholar]
  5. Bremer C. M., Bung C., Kott N., Hardt M., Glebe D.. ( 2009;). Hepatitis B virus infection is dependent on cholesterol in the viral envelope. . Cell Microbiol 11:, 249–260. [CrossRef].[PubMed].
    [Google Scholar]
  6. Campbell S. M., Crowe S. M., Mak J.. ( 2001;). Lipid rafts and HIV-1: from viral entry to assembly of progeny virions. . J Clin Virol 22:, 217–227. [CrossRef].[PubMed].
    [Google Scholar]
  7. Campbell S. M., Crowe S. M., Mak J.. ( 2002;). Virion-associated cholesterol is critical for the maintenance of HIV-1 structure and infectivity. . AIDS 16:, 2253–2261. [CrossRef].[PubMed].
    [Google Scholar]
  8. Campbell S., Gaus K., Bittman R., Jessup W., Crowe S., Mak J.. ( 2004;). The raft-promoting property of virion-associated cholesterol, but not the presence of virion-associated Brij 98 rafts, is a determinant of human immunodeficiency virus type 1 infectivity. . J Virol 78:, 10556–10565. [CrossRef].[PubMed].
    [Google Scholar]
  9. Chang K. S., Jiang J., Cai Z., Luo G.. ( 2007;). Human apolipoprotein E is required for infectivity and production of hepatitis C virus in cell culture. . J Virol 81:, 13783–13793. [CrossRef].[PubMed].
    [Google Scholar]
  10. Diaz O., Delers F., Maynard M., Demignot S., Zoulim F., Chambaz J., Trépo C., Lotteau V., André P.. ( 2006;). Preferential association of hepatitis C virus with apolipoprotein B48-containing lipoproteins. . J Gen Virol 87:, 2983–2991. [CrossRef].[PubMed].
    [Google Scholar]
  11. Graham D. R., Chertova E., Hilburn J. M., Arthur L. O., Hildreth J. E.. ( 2003;). Cholesterol depletion of human immunodeficiency virus type 1 and simian immunodeficiency virus with β-cyclodextrin inactivates and permeabilizes the virions: evidence for virion-associated lipid rafts. . J Virol 77:, 8237–8248. [CrossRef].[PubMed].
    [Google Scholar]
  12. Hambleton S., Steinberg S. P., Gershon M. D., Gershon A. A.. ( 2007;). Cholesterol dependence of varicella-zoster virion entry into target cells. . J Virol 81:, 7548–7558. [CrossRef].[PubMed].
    [Google Scholar]
  13. Hishiki T., Shimizu Y., Tobita R., Sugiyama K., Ogawa K., Funami K., Ohsaki Y., Fujimoto T., Takaku H. et al. ( 2010;). Infectivity of hepatitis C virus is influenced by association with apolipoprotein E isoforms. . J Virol 84:, 12048–12057. [CrossRef].[PubMed].
    [Google Scholar]
  14. Huang H., Sun F., Owen D. M., Li W., Chen Y., Gale M. Jr, Ye J.. ( 2007;). Hepatitis C virus production by human hepatocytes dependent on assembly and secretion of very low-density lipoproteins. . Proc Natl Acad Sci U S A 104:, 5848–5853. [CrossRef].[PubMed].
    [Google Scholar]
  15. Icard V., Diaz O., Scholtes C., Perrin-Cocon L., Ramière C., Bartenschlager R., Penin F., Lotteau V., André P.. ( 2009;). Secretion of hepatitis C virus envelope glycoproteins depends on assembly of apolipoprotein B positive lipoproteins. . PLoS One 4:, e4233. [CrossRef].[PubMed].
    [Google Scholar]
  16. Jiang J., Luo G.. ( 2009;). Apolipoprotein E but not B is required for the formation of infectious hepatitis C virus particles. . J Virol 83:, 12680–12691. [CrossRef].[PubMed].
    [Google Scholar]
  17. Lindenbach B. D., Meuleman P., Ploss A., Vanwolleghem T., Syder A. J., McKeating J. A., Lanford R. E., Feinstone S. M., Major M. E. et al. ( 2006;). Cell culture-grown hepatitis C virus is infectious in vivo and can be recultured in vitro. . Proc Natl Acad Sci U S A 103:, 3805–3809. [CrossRef].[PubMed].
    [Google Scholar]
  18. Megha, Bakht O., London E.. ( 2006;). Cholesterol precursors stabilize ordinary and ceramide-rich ordered lipid domains (lipid rafts) to different degrees. Implications for the Bloch hypothesis and sterol biosynthesis disorders. . J Biol Chem 281:, 21903–21913. [CrossRef].[PubMed].
    [Google Scholar]
  19. Merz A., Long G., Hiet M. S., Brügger B., Chlanda P., Andre P., Wieland F., Krijnse-Locker J., Bartenschlager R.. ( 2011;). Biochemical and morphological properties of hepatitis C virus particles and determination of their lipidome. . J Biol Chem 286:, 3018–3032. [CrossRef].[PubMed].
    [Google Scholar]
  20. Nielsen S. U., Bassendine M. F., Burt A. D., Martin C., Pumeechockchai W., Toms G. L.. ( 2006;). Association between hepatitis C virus and very-low-density lipoprotein (VLDL)/LDL analyzed in iodixanol density gradients. . J Virol 80:, 2418–2428. [CrossRef].[PubMed].
    [Google Scholar]
  21. Owen D. M., Huang H., Ye J., Gale M. Jr. ( 2009;). Apolipoprotein E on hepatitis C virion facilitates infection through interaction with low-density lipoprotein receptor. . Virology 394:, 99–108. [CrossRef].[PubMed].
    [Google Scholar]
  22. Takeuchi T., Katsume A., Tanaka T., Abe A., Inoue K., Tsukiyama-Kohara K., Kawaguchi R., Tanaka S., Kohara M.. ( 1999;). Real-time detection system for quantification of hepatitis C virus genome. . Gastroenterology 116:, 636–642. [CrossRef].[PubMed].
    [Google Scholar]
  23. Thomssen R., Bonk S., Thiele A.. ( 1993;). Density heterogeneities of hepatitis C virus in human sera due to the binding of beta-lipoproteins and immunoglobulins. . Med Microbiol Immunol (Berl) 182:, 329–334. [CrossRef].[PubMed].
    [Google Scholar]
  24. Tulenko T. N., Boeze-Battaglia K., Mason R. P., Tint G. S., Steiner R. D., Connor W. E., Labelle E. F.. ( 2006;). A membrane defect in the pathogenesis of the Smith–Lemli–Opitz syndrome. . J Lipid Res 47:, 134–143. [CrossRef].[PubMed].
    [Google Scholar]
  25. Wakita T., Pietschmann T., Kato T., Date T., Miyamoto M., Zhao Z., Murthy K., Habermann A., Kräusslich H. G. et al. ( 2005;). Production of infectious hepatitis C virus in tissue culture from a cloned viral genome. . Nat Med 11:, 791–796. [CrossRef].[PubMed].
    [Google Scholar]
  26. Wang J., Megha, London E.. ( 2004;). Relationship between sterol/steroid structure and participation in ordered lipid domains (lipid rafts): implications for lipid raft structure and function. . Biochemistry 43:, 1010–1018. [CrossRef].[PubMed].
    [Google Scholar]
  27. Xu X., London E.. ( 2000;). The effect of sterol structure on membrane lipid domains reveals how cholesterol can induce lipid domain formation. . Biochemistry 39:, 843–849. [CrossRef].[PubMed].
    [Google Scholar]
  28. Xu X., Bittman R., Duportail G., Heissler D., Vilcheze C., London E.. ( 2001;). Effect of the structure of natural sterols and sphingolipids on the formation of ordered sphingolipid/sterol domains (rafts). Comparison of cholesterol to plant, fungal, and disease-associated sterols and comparison of sphingomyelin, cerebrosides, and ceramide. . J Biol Chem 276:, 33540–33546. [CrossRef].[PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.032391-0
Loading
/content/journal/jgv/10.1099/vir.0.032391-0
Loading

Data & Media loading...

Supplements

Proportion of cholesterol to sterol analogue in lipid-modified HCV [ PDF] (41 KB)

PDF

Sucrose density-gradient profiles of lipid-modified HCV and distribution of apolipoprotein E [ PDF] (1.5 MB)

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error