1887

Abstract

Chimeric foot-and-mouth disease viruses (FMDVs) have been generated from plasmids containing full-length FMDV cDNAs and characterized. The parental virus cDNA was derived from the cell-culture-adapted O1Kaufbeuren B64 (O1K B64) strain. Chimeric viruses, containing capsid coding sequences derived from the O/UKG/34/2001 or A/Turkey 2/2006 field viruses, were constructed using the backbone from the O1K B64 cDNA, and viable viruses (O1K/O-UKG and O1K/A-Tur, respectively) were successfully rescued in each case. These viruses grew well in primary bovine thyroid cells but grew less efficiently in BHK cells than the rescued parental O1K B64 virus. The two chimeric viruses displayed the expected antigenicity in serotype-specific antigen ELISAs. Following inoculation of each virus into cattle, the rescued O1K B64 strain proved to be attenuated whereas, with each chimeric virus, typical clinical signs of foot-and-mouth disease were observed, which then spread to in-contact animals. Thus, the surface-exposed capsid proteins of the O1K B64 strain are responsible for its attenuation in cattle. Consequently, there is no evidence for any adaptation, acquired during cell culture, outside the capsid coding region within the O1K B64 strain that inhibits replication in cattle. These chimeric infectious cDNA plasmids provide a basis for the analysis of FMDV pathogenicity and characterization of receptor utilization .

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.029710-0
2011-05-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/jgv/92/5/1141.html?itemId=/content/journal/jgv/10.1099/vir.0.029710-0&mimeType=html&fmt=ahah

References

  1. Acharya R., Fry E., Stuart D., Fox G., Rowlands D., Brown F.. ( 1989;). The three-dimensional structure of foot-and-mouth disease virus at 2.9 Å resolution. . Nature 337:, 709–716. [CrossRef][PubMed]
    [Google Scholar]
  2. Alexandersen S., Zhang Z., Donaldson A. I., Garland A. J. M.. ( 2003;). The pathogenesis and diagnosis of foot-and-mouth disease. . J Comp Pathol 129:, 1–36. [CrossRef][PubMed]
    [Google Scholar]
  3. Balinda S. N., Tjørnehøj K., Muwanika V. B., Sangula A. K., Mwiine F. N., Ayebazibwe C., Masembe C., Siegismund H. R., Alexandersen S.. ( 2009;). Prevalence estimates of antibodies towards foot-and-mouth disease virus in small ruminants in Uganda. . Transbound Emerg Dis 56:, 362–371. [CrossRef][PubMed]
    [Google Scholar]
  4. Baranowski E., Sevilla N., Verdaguer N., Ruiz-Jarabo C. M., Beck E., Domingo E.. ( 1998;). Multiple virulence determinants of foot-and-mouth disease virus in cell culture. . J Virol 72:, 6362–6372.[PubMed]
    [Google Scholar]
  5. Baranowski E., Ruiz-Jarabo C. M., Sevilla N., Andreu D., Beck E., Domingo E.. ( 2000;). Cell recognition by foot-and-mouth disease virus that lacks the RGD integrin-binding motif: flexibility in aphthovirus receptor usage. . J Virol 74:, 1641–1647. [CrossRef][PubMed]
    [Google Scholar]
  6. Belsham G. J.. ( 2005;). Translation and replication of FMDV RNA. . Curr Top Microbiol Immunol 288:, 43–70. [CrossRef][PubMed]
    [Google Scholar]
  7. Belsham G. J., Normann P.. ( 2008;). Dynamics of picornavirus RNA replication within infected cells. . J Gen Virol 89:, 485–493. [CrossRef][PubMed]
    [Google Scholar]
  8. Brehm K. E., Ferris N. P., Lenk M., Riebe R., Haas B.. ( 2009;). Highly sensitive fetal goat tongue cell line for detection and isolation of foot-and-mouth disease virus. . J Clin Microbiol 47:, 3156–3160. [CrossRef][PubMed]
    [Google Scholar]
  9. Burman A., Clark S., Abrescia N. G., Fry E. E., Stuart D. I., Jackson T.. ( 2006;). Specificity of the VP1 GH loop of foot-and-mouth disease virus for αv integrins. . J Virol 80:, 9798–9810. [CrossRef][PubMed]
    [Google Scholar]
  10. Curry S., Fry E., Blakemore W., Abu-Ghazaleh R., Jackson T., King A., Lea S., Newman J., Rowlands D., Stuart D.. ( 1996;). Perturbations in the surface structure of A22 Iraq foot-and-mouth disease virus accompanying coupled changes in host cell specificity and antigenicity. . Structure 4:, 135–145. [CrossRef][PubMed]
    [Google Scholar]
  11. Ellard F. M., Drew J., Blakemore W. E., Stuart D. I., King A. M. Q.. ( 1999;). Evidence for the role of His-142 of protein 1C in the acid-induced disassembly of foot-and-mouth disease virus capsids. . J Gen Virol 80:, 1911–1918.[PubMed]
    [Google Scholar]
  12. Escarmís C., Carrillo E. C., Ferrer M., Arriaza J. F. G., Lopez N., Tami C., Verdaguer N., Domingo E., Franze-Fernández M. T.. ( 1998;). Rapid selection in modified BHK-21 cells of a foot-and-mouth disease virus variant showing alterations in cell tropism. . J Virol 72:, 10171–10179.[PubMed]
    [Google Scholar]
  13. Falk M. M., Sobrino F., Beck E.. ( 1992;). VPg gene amplification correlates with infective particle formation in foot-and-mouth disease virus. . J Virol 66:, 2251–2260.[PubMed]
    [Google Scholar]
  14. Fry E. E., Lea S. M., Jackson T., Newman J. W., Ellard F. M., Blakemore W. E., Abu-Ghazaleh R., Samuel A., King A. M. Q., Stuart D. I.. ( 1999;). The structure and function of a foot-and-mouth disease virus-oligosaccharide receptor complex. . EMBO J 18:, 543–554. [CrossRef][PubMed]
    [Google Scholar]
  15. Fry E. E., Newman J. W., Curry S., Najjam S., Jackson T., Blakemore W., Lea S. M., Miller L., Burman A. et al. ( 2005;). Structure of foot-and-mouth disease virus serotype A10 61 alone and complexed with oligosaccharide receptor: receptor conservation in the face of antigenic variation. . J Gen Virol 86:, 1909–1920. [CrossRef][PubMed]
    [Google Scholar]
  16. García-Arriaza J., Manrubia S. C., Toja M., Domingo E., Escarmís C.. ( 2004;). Evolutionary transition toward defective RNAs that are infectious by complementation. . J Virol 78:, 11678–11685. [CrossRef][PubMed]
    [Google Scholar]
  17. Have, P. & Jensen, M. H. (1983). Detection of antibodies to foot-and-mouth disease virus type O by enzyme-linked immunosorbent assay (ELISA). In Proceedings Research Group of the Session of the Standing Technical Committee of the European Commission for the Control of Foot-and-Mouth Disease, Lelystad, Netherlands, Appendix VIII, pp. 44–51.
  18. Jackson T., Ellard F. M., Ghazaleh R. A., Brookes S. M., Blakemore W. E., Corteyn A. H., Stuart D. I., Newman J. W. I., King A. M. Q.. ( 1996;). Efficient infection of cells in culture by type O foot-and-mouth disease virus requires binding to cell surface heparan sulfate. . J Virol 70:, 5282–5287.[PubMed]
    [Google Scholar]
  19. Jackson T., Sheppard D., Denyer M., Blakemore W., King A. M. Q.. ( 2000;). The epithelial integrin αvβ6 is a receptor for foot-and-mouth disease virus. . J Virol 74:, 4949–4956. [CrossRef][PubMed]
    [Google Scholar]
  20. Jackson T., Clark S., Berryman S., Burman A., Cambier S., Mu D., Nishimura S., King A. M. Q.. ( 2004;). Integrin αvβ8 functions as a receptor for foot-and-mouth disease virus: role of the beta-chain cytodomain in integrin-mediated infection. . J Virol 78:, 4533–4540. [CrossRef][PubMed]
    [Google Scholar]
  21. Lea S., Hernández J., Blakemore W., Brocchi E., Curry S., Domingo E., Fry E., Abu-Ghazaleh R., King A. et al. ( 1994;). The structure and antigenicity of a type C foot-and-mouth disease virus. . Structure 2:, 123–139. [CrossRef][PubMed]
    [Google Scholar]
  22. Maree F. F., Blignaut B., de Beer T. A., Visser N., Rieder E. A.. ( 2010;). Mapping of amino acid residues responsible for adhesion of cell culture-adapted foot-and-mouth disease SAT type viruses. . Virus Res 153:, 82–91. [CrossRef][PubMed]
    [Google Scholar]
  23. Monaghan P., Gold S., Simpson J., Zhang Z., Weinreb P. H., Violette S. M., Alexandersen S., Jackson T.. ( 2005;). The αvβ6 integrin receptor for Foot-and-mouth disease virus is expressed constitutively on the epithelial cells targeted in cattle. . J Gen Virol 86:, 2769–2780. [CrossRef][PubMed]
    [Google Scholar]
  24. Nayak A., Goodfellow I. G., Woolaway K. E., Birtley J., Curry S., Belsham G. J.. ( 2006;). Role of RNA structure and RNA binding activity of foot-and-mouth disease virus 3C protein in VPg uridylylation and virus replication. . J Virol 80:, 9865–9875. [CrossRef][PubMed]
    [Google Scholar]
  25. O’Donnell V., Pacheco J. M., Gregg D., Baxt B.. ( 2009;). Analysis of foot-and-mouth disease virus integrin receptor expression in tissues from naïve and infected cattle. . J Comp Pathol 141:, 98–112. [CrossRef][PubMed]
    [Google Scholar]
  26. Pacheco J. M., Henry T. M., O’Donnell V. K., Gregory J. B., Mason P. W.. ( 2003;). Role of nonstructural proteins 3A and 3B in host range and pathogenicity of foot-and-mouth disease virus. . J Virol 77:, 13017–13027. [CrossRef][PubMed]
    [Google Scholar]
  27. Piccone M. E., Rieder E., Mason P. W., Grubman M. J.. ( 1995;). The foot-and-mouth disease virus leader proteinase gene is not required for viral replication. . J Virol 69:, 5376–5382.[PubMed]
    [Google Scholar]
  28. Reed L. J., Muench H.. ( 1938;). A simple method of estimating fifty percent endpoints. . Am J Hyg 27:, 493–497.
    [Google Scholar]
  29. Reid S. M., Grierson S. S., Ferris N. P., Hutchings G. H., Alexandersen S.. ( 2003;). Evaluation of automated RT-PCR to accelerate the laboratory diagnosis of foot-and-mouth disease virus. . J Virol Methods 107:, 129–139. [CrossRef][PubMed]
    [Google Scholar]
  30. Rieder E., Bunch T., Brown F., Mason P. W.. ( 1993;). Genetically engineered foot-and-mouth disease viruses with poly(C) tracts of two nucleotides are virulent in mice. . J Virol 67:, 5139–5145.[PubMed]
    [Google Scholar]
  31. Roeder P. L., Le Blanc Smith P. M.. ( 1987;). Detection and typing of foot-and-mouth disease virus by enzyme-linked immunosorbent assay: a sensitive, rapid and reliable technique for primary diagnosis. . Res Vet Sci 43:, 225–232.[PubMed]
    [Google Scholar]
  32. Sa-Carvalho D., Rieder E., Baxt B., Rodarte R., Tanuri A., Mason P. W.. ( 1997;). Tissue culture adaptation of foot-and-mouth disease virus selects viruses that bind to heparin and are attenuated in cattle. . J Virol 71:, 5115–5123.[PubMed]
    [Google Scholar]
  33. van Rensburg H. G., Henry T. M., Mason P. W.. ( 2004;). Studies of genetically defined chimeras of a European type A virus and a South African Territories type 2 virus reveal growth determinants for foot-and-mouth disease virus. . J Gen Virol 85:, 61–68. [CrossRef][PubMed]
    [Google Scholar]
  34. Zibert A., Maass G., Strebel K., Falk M. M., Beck E.. ( 1990;). Infectious foot-and-mouth disease virus derived from a cloned full-length cDNA. . J Virol 64:, 2467–2473.[PubMed]
    [Google Scholar]
  35. Zunszain P. A., Knox S. R., Sweeney T. R., Yang J., Roqué-Rosell N., Belsham G. J., Leatherbarrow R. J., Curry S.. ( 2010;). Insights into cleavage specificity from the crystal structure of foot-and-mouth disease virus 3C protease complexed with a peptide substrate. . J Mol Biol 395:, 375–389. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.029710-0
Loading
/content/journal/jgv/10.1099/vir.0.029710-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error