1887

Abstract

Enterovirus 71 (EV71) is a member of the species within the family and is a major causative agent of epidemics of hand, foot and mouth disease associated with severe neurological disease. Three EV71 genogroups, designated A, B and C, have been identified, with 75–84 % nucleotide sequence similarity between them. Two strains, EV71-26M (genogroup B) and EV71-6F (genogroup C), were found to have distinct cell-culture growth (26M, rapid; 6F, slow) and plaque-formation (26M, large; 6F, small) phenotypes. To identify the genome regions responsible for the growth phenotypes of the two strains, a series of chimeric viruses was constructed by exchanging the 5′ untranslated region (UTR), P1 structural protein or P2/P3 non-structural protein gene regions plus the 3′UTR using infectious cDNA clones of both virus strains. Analysis of reciprocal virus chimeras revealed that the 5′UTRs of both strains were compatible, but not responsible for the observed phenotypes. Introduction of the EV71-6F P1 region into the EV71-26M clone resulted in a small-plaque and slow-growth phenotype similar to that of EV71-6F, whereas the reciprocal chimera displayed intermediate-growth and intermediate-sized plaque phenotypes. Introduction of the EV71-26M P2–P3–3′UTR regions into the EV71-6F clone resulted in a large-plaque and rapid-growth phenotype identical to that of strain EV71-26M, whereas the reciprocal chimera retained the background strain large-plaque phenotype. These results indicate that, although both the P1 and P2–P3–3′UTR genome regions influence the EV71 growth phenotype in cell culture, phenotype expression is dependent on specific genome-segment combinations and is not reciprocal.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.029371-0
2011-06-01
2019-12-09
Loading full text...

Full text loading...

/deliver/fulltext/jgv/92/6/1380.html?itemId=/content/journal/jgv/10.1099/vir.0.029371-0&mimeType=html&fmt=ahah

References

  1. Andino R. , Rieckhof G. E. , Baltimore D. . ( 1990; ). A functional ribonucleoprotein complex forms around the 5′ end of poliovirus RNA. . Cell 63:, 369–380. [CrossRef] [PubMed]
    [Google Scholar]
  2. Andino R. , Rieckhof G. E. , Achacoso P. L. , Baltimore D. . ( 1993; ). Poliovirus RNA synthesis utilizes an RNP complex formed around the 5′-end of viral RNA. . EMBO J 12:, 3587–3598.[PubMed]
    [Google Scholar]
  3. Arita M. , Shimizu H. , Nagata N. , Ami Y. , Suzaki Y. , Sata T. , Iwasaki T. , Miyamura T. . ( 2005; ). Temperature-sensitive mutants of enterovirus 71 show attenuation in cynomolgus monkeys. . J Gen Virol 86:, 1391–1401. [CrossRef] [PubMed]
    [Google Scholar]
  4. Brown B. A. , Oberste M. S. , Alexander J. P. Jr , Kennett M. L. , Pallansch M. A. . ( 1999; ). Molecular epidemiology and evolution of enterovirus 71 strains isolated from 1970 to 1998. . J Virol 73:, 9969–9975.[PubMed]
    [Google Scholar]
  5. Cardosa M. J. , Perera D. , Brown B. A. , Cheon D. , Chan H. M. , Chan K. P. , Cho H. , McMinn P. . ( 2003; ). Molecular epidemiology of human enterovirus 71 strains and recent outbreaks in the Asia-Pacific region: comparative analysis of the VP1 and VP4 genes. . Emerg Infect Dis 9:, 461–468.[PubMed] [CrossRef]
    [Google Scholar]
  6. Chan Y.-F. , AbuBakar S. . ( 2006; ). Phylogenetic evidence for inter-typic recombination in the emergence of human enterovirus 71 subgenotypes. . BMC Microbiol 6:, 74–84. [CrossRef] [PubMed]
    [Google Scholar]
  7. Chua B. H. , Phuektes P. , Sanders S. A. , Nicholls P. K. , McMinn P. C. . ( 2008; ). The molecular basis of mouse adaptation by human enterovirus 71. . J Gen Virol 89:, 1622–1632. [CrossRef] [PubMed]
    [Google Scholar]
  8. Ehrenfeld E. , Teterina N. L. . ( 2002; ). Initiation of translation of picornavirus RNAs: structure and function of the internal ribosome entry site. . In Molecular Biology of Picornaviruses, pp. 159–169. Edited by Semler B. L. , Wimmer E. . . Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  9. Hambidge S. J. , Sarnow P. . ( 1992; ). Translational enhancement of the poliovirus 5′ noncoding region mediated by virus-encoded polypeptide 2A. . Proc Natl Acad Sci U S A 89:, 10272–10276. [CrossRef] [PubMed]
    [Google Scholar]
  10. Herrero L. J. , Lee C. S. , Hurrelbrink R. J. , Chua B. H. , Chua K. B. , McMinn P. C. . ( 2003; ). Molecular epidemiology of enterovirus 71 in peninsular Malaysia, 1997–2000. . Arch Virol 148:, 1369–1385. [CrossRef] [PubMed]
    [Google Scholar]
  11. Huang S. C. , Hsu Y. W. , Wang H. C. , Huang S. W. , Kiang D. , Tsai H. P. , Wang S. M. , Liu C. C. , Lin K. H. et al. ( 2008; ). Appearance of intratypic recombination of enterovirus 71 in Taiwan from 2002 to 2005. . Virus Res 131:, 250–259. [CrossRef] [PubMed]
    [Google Scholar]
  12. Jiang P. , Faase J. A. , Toyoda H. , Paul A. , Wimmer E. , Gorbalenya A. E. . ( 2007; ). Evidence for emergence of diverse polioviruses from C-cluster coxsackie A viruses and implications for global poliovirus eradication. . Proc Natl Acad Sci U S A 104:, 9457–9462. [CrossRef] [PubMed]
    [Google Scholar]
  13. Kanno T. , Mackay D. , Inoue T. , Wilsden G. , Yamakawa M. , Yamazoe R. , Yamaguchi S. , Shirai J. , Kitching P. , Murakami Y. . ( 1999; ). Mapping the genetic determinants of pathogenicity and plaque phenotype in swine vesicular disease virus. . J Virol 73:, 2710–2716.[PubMed]
    [Google Scholar]
  14. Kimura M. . ( 1980; ). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef] [PubMed]
    [Google Scholar]
  15. Lee J. C. , Wu T. Y. , Huang C. F. , Yang F. M. , Shih S. R. , Hsu J. T. A. . ( 2005; ). High-efficiency protein expression mediated by enterovirus 71 internal ribosome entry site. . Biotechnol Bioeng 90:, 656–662. [CrossRef] [PubMed]
    [Google Scholar]
  16. Lin K. H. , Hwang K. P. , Ke G. M. , Wang C. F. , Ke L. Y. , Hsu Y. T. , Tung Y. C. , Chu P. Y. , Chen B. H. et al. ( 2006; ). Evolution of EV71 genogroup in Taiwan from 1998 to 2005: an emerging of subgenogroup C4 of EV71. . J Med Virol 78:, 254–262. [CrossRef] [PubMed]
    [Google Scholar]
  17. Lole K. S. , Bollinger R. C. , Paranjape R. S. , Gadkari D. , Kulkarni S. S. , Novak N. G. , Ingersoll R. , Sheppard H. W. , Ray S. C. . ( 1999; ). Full-length human immunodeficiency virus type 1 genomes from subtype C-infected seroconverters in India, with evidence of intersubtype recombination. . J Virol 73:, 152–160.[PubMed]
    [Google Scholar]
  18. McMinn P. , Lindsay K. , Perera D. , Chan H. M. , Chan K. P. , Cardosa M. J. . ( 2001; ). Phylogenetic analysis of enterovirus 71 strains isolated during linked epidemics in Malaysia, Singapore, and Western Australia. . J Virol 75:, 7732–7738. [CrossRef] [PubMed]
    [Google Scholar]
  19. Nijhuis M. , van Maarseveen N. , Schuurman R. , Verkuijlen S. , de Vos M. , Hendriksen K. , van Loon A. M. . ( 2002; ). Rapid and sensitive routine detection of all members of the genus Enterovirus in different clinical specimens by real-time PCR. . J Clin Microbiol 40:, 3666–3670. [CrossRef] [PubMed]
    [Google Scholar]
  20. Oberste M. S. , Maher K. , Pallansch M. A. . ( 2004; a). Evidence for frequent recombination within species human enterovirus B based on complete genomic sequences of all thirty-seven serotypes. . J Virol 78:, 855–867. [CrossRef] [PubMed]
    [Google Scholar]
  21. Oberste M. S. , Peñaranda S. , Maher K. , Pallansch M. A. . ( 2004; b). Complete genome sequences of all members of the species human enterovirus A. . J Gen Virol 85:, 1597–1607. [CrossRef] [PubMed]
    [Google Scholar]
  22. Oberste M. S. , Maher K. , Michele S. M. , Belliot G. , Uddin M. , Pallansch M. A. . ( 2005; ). Enteroviruses 76, 89, 90 and 91 represent a novel group within the species Human enterovirus A . . J Gen Virol 86:, 445–451. [CrossRef] [PubMed]
    [Google Scholar]
  23. Page R. D. . ( 1996; ). TreeView: an application to display phylogenetic trees on personal computers. . Comput Appl Biosci 12:, 357–358.[PubMed]
    [Google Scholar]
  24. Parsley T. B. , Towner J. S. , Blyn L. B. , Ehrenfeld E. , Semler B. L. . ( 1997; ). Poly (rC) binding protein 2 forms a ternary complex with the 5′-terminal sequences of poliovirus RNA and the viral 3CD proteinase. . RNA 3:, 1124–1134.[PubMed]
    [Google Scholar]
  25. Ramsingh A. I. , Caggana M. , Ronstrom S. . ( 1995; ). Genetic mapping of the determinants of plaque morphology of coxsackievirus B4. . Arch Virol 140:, 2215–2226. [CrossRef] [PubMed]
    [Google Scholar]
  26. Rohll J. B. , Percy N. , Ley R. , Evans D. J. , Almond J. W. , Barclay W. S. . ( 1994; ). The 5′-untranslated regions of picornavirus RNAs contain independent functional domains essential for RNA replication and translation. . J Virol 68:, 4384–4391.[PubMed]
    [Google Scholar]
  27. Santti J. , Hyypiä T. , Kinnunen L. , Salminen M. . ( 1999; ). Evidence of recombination among enteroviruses. . J Virol 73:, 8741–8749.[PubMed]
    [Google Scholar]
  28. Shimizu H. , Utama A. , Onnimala N. , Li C. , Li-Bi Z. , Yu-Jie M. , Pongsuwanna Y. , Miyamura T. . ( 2004; ). Molecular epidemiology of enterovirus 71 infection in the Western Pacific Region. . Pediatr Int 46:, 231–235. [CrossRef] [PubMed]
    [Google Scholar]
  29. Simmonds P. , Welch J. . ( 2006; ). Frequency and dynamics of recombination within different species of human enteroviruses. . J Virol 80:, 483–493. [CrossRef] [PubMed]
    [Google Scholar]
  30. Tee K. K. , Lam T. T. , Chan Y. F. , Bible J. M. , Kamarulzaman A. , Tong C. Y. , Takebe Y. , Pybus O. G. . ( 2010; ). Evolutionary genetics of human enterovirus 71: origin, population dynamics, natural selection, and seasonal periodicity of the VP1 gene. . J Virol 84:, 3339–3350. [CrossRef] [PubMed]
    [Google Scholar]
  31. Thompson J. D. , Higgins D. G. , Gibson T. J. . ( 1994; ). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. . Nucleic Acids Res 22:, 4673–4680. [CrossRef] [PubMed]
    [Google Scholar]
  32. Tu P. V. , Thao N. T. , Perera D. , Huu T. K. , Tien N. T. , Thuong T. C. , How O. M. , Cardosa M. J. , McMinn P. C. . ( 2007; ). Epidemiologic and virologic investigation of hand, foot, and mouth disease, southern Vietnam, 2005. . Emerg Infect Dis 13:, 1733–1741.[PubMed] [CrossRef]
    [Google Scholar]
  33. Yan J. J. , Su I. J. , Chen P. F. , Liu C. C. , Yu C. K. , Wang J. R. . ( 2001; ). Complete genome analysis of enterovirus 71 isolated from an outbreak in Taiwan and rapid identification of enterovirus 71 and coxsackievirus A16 by RT-PCR. . J Med Virol 65:, 331–339. [CrossRef] [PubMed]
    [Google Scholar]
  34. Yip C. C. , Lau S. K. , Zhou B. , Zhang M. X. , Tsoi H. W. , Chan K. H. , Chen X. C. , Woo P. C. , Yuen K. Y. . ( 2010; ). Emergence of enterovirus 71 “double-recombinant” strains belonging to a novel genotype D originating from southern China: first evidence for combination of intratypic and intertypic recombination events in EV71. . Arch Virol 155:, 1413–1424. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.029371-0
Loading
/content/journal/jgv/10.1099/vir.0.029371-0
Loading

Data & Media loading...

Supplements

[ Single PDF file of figures] (103 KB)

PDF

[ PDF file] (29 KB)

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error