1887

Abstract

RNA virus genome replication requires initiation at the precise terminus of the template RNA. To investigate the nucleotide requirements for initiation of hepatitis C virus (HCV) positive-strand RNA replication, a hammerhead ribozyme was inserted at the 5′ end of an HCV subgenomic replicon, allowing the generation of replicons with all four possible nucleotides at position 1. This analysis revealed a preference for a purine nucleotide at this position for initiation of RNA replication. The sequence requirements at positions 2–4 in the context of the J6/JFH-1 virus were also examined by selecting replication-competent virus from a pool containing randomized residues at these positions. There was strong selection for both the wild-type cytosine at position 2, and the wild-type sequence at positions 2–4 (CCU). An adenine residue was well tolerated at positions 3 and 4, which suggests that efficient RNA replication is less dependent on these residues.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.028423-0
2011-05-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/jgv/92/5/1082.html?itemId=/content/journal/jgv/10.1099/vir.0.028423-0&mimeType=html&fmt=ahah

References

  1. Cai Z., Liang T. J., Luo G.. ( 2004;). Effects of mutations of the initiation nucleotides on hepatitis C virus RNA replication in the cell. . J Virol 78:, 3633–3643. [CrossRef][PubMed]
    [Google Scholar]
  2. Hughes M., Gretton S., Shelton H., Brown D. D., McCormick C. J., Angus A. G., Patel A. H., Griffin S., Harris M.. ( 2009;). A conserved proline between domains II and III of hepatitis C virus NS5A influences both RNA replication and virus assembly. . J Virol 83:, 10788–10796. [CrossRef][PubMed]
    [Google Scholar]
  3. Kato T., Furusaka A., Miyamoto M., Date T., Yasui K., Hiramoto J., Nagayama K., Tanaka T., Wakita T.. ( 2001;). Sequence analysis of hepatitis C virus isolated from a fulminant hepatitis patient. . J Med Virol 64:, 334–339. [CrossRef][PubMed]
    [Google Scholar]
  4. Kato T., Date T., Miyamoto M., Furusaka A., Tokushige K., Mizokami M., Wakita T.. ( 2003;). Efficient replication of the genotype 2a hepatitis C virus subgenomic replicon. . Gastroenterology 125:, 1808–1817. [CrossRef][PubMed]
    [Google Scholar]
  5. Krieger N., Lohmann V., Bartenschlager R.. ( 2001;). Enhancement of hepatitis C virus RNA replication by cell culture-adaptive mutations. . J Virol 75:, 4614–4624. [CrossRef][PubMed]
    [Google Scholar]
  6. Kuiken C., Yusim K., Boykin L., Richardson R.. ( 2005;). The Los Alamos hepatitis C sequence database. . Bioinformatics 21:, 379–384. [CrossRef][PubMed]
    [Google Scholar]
  7. Lohmann V., Körner F., Koch J. O., Herian U., Theilmann L., Bartenschlager R.. ( 1999;). Replication of subgenomic hepatitis C virus RNAs in a hepatoma cell line. . Science 285:, 110–113. [CrossRef][PubMed]
    [Google Scholar]
  8. Luo G., Hamatake R. K., Mathis D. M., Racela J., Rigat K. L., Lemm J., Colonno R. J.. ( 2000;). De novo initiation of RNA synthesis by the RNA-dependent RNA polymerase (NS5B) of hepatitis C virus. . J Virol 74:, 851–863. [CrossRef][PubMed]
    [Google Scholar]
  9. Luo G., Xin S., Cai Z.. ( 2003;). Role of the 5′-proximal stem-loop structure of the 5′ untranslated region in replication and translation of hepatitis C virus RNA. . J Virol 77:, 3312–3318. [CrossRef][PubMed]
    [Google Scholar]
  10. McCormick C. J., Challinor L., Macdonald A., Rowlands D. J., Harris M.. ( 2004;). Introduction of replication-competent hepatitis C virus transcripts using a tetracycline-regulable baculovirus delivery system. . J Gen Virol 85:, 429–439. [CrossRef][PubMed]
    [Google Scholar]
  11. Pietschmann T., Kaul A., Koutsoudakis G., Shavinskaya A., Kallis S., Steinmann E., Abid K., Negro F., Dreux M. et al. ( 2006;). Construction and characterization of infectious intragenotypic and intergenotypic hepatitis C virus chimeras. . Proc Natl Acad Sci U S A 103:, 7408–7413. [CrossRef][PubMed]
    [Google Scholar]
  12. Shim J. H., Larson G., Wu J. Z., Hong Z.. ( 2002;). Selection of 3′-template bases and initiating nucleotides by hepatitis C virus NS5B RNA-dependent RNA polymerase. . J Virol 76:, 7030–7039. [CrossRef][PubMed]
    [Google Scholar]
  13. Simister P., Schmitt M., Geitmann M., Wicht O., Danielson U. H., Klein R., Bressanelli S., Lohmann V.. ( 2009;). Structural and functional analysis of hepatitis C virus strain JFH1 polymerase. . J Virol 83:, 11926–11939. [CrossRef][PubMed]
    [Google Scholar]
  14. Wakita T., Pietschmann T., Kato T., Date T., Miyamoto M., Zhao Z., Murthy K., Habermann A., Kräusslich H. G. et al. ( 2005;). Production of infectious hepatitis C virus in tissue culture from a cloned viral genome. . Nat Med 11:, 791–796. [CrossRef][PubMed]
    [Google Scholar]
  15. Zhong W., Uss A. S., Ferrari E., Lau J. Y., Hong Z.. ( 2000;). De novo initiation of RNA synthesis by hepatitis C virus nonstructural protein 5B polymerase. . J Virol 74:, 2017–2022. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.028423-0
Loading
/content/journal/jgv/10.1099/vir.0.028423-0
Loading

Data & Media loading...

Supplements

vol. , part 5, pp. 1082–1086

Input and output sequences at the +2, +3 and +4 positions present in the randomized J6/JFH-1 5′ UTR

[ PDF file] (73 KB)



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error