Psittacine beak and feather disease (PBFD) has a broad host range and is widespread in wild and captive psittacine populations in Asia, Africa, the Americas, Europe and Australasia. Beak and feather disease circovirus (BFDV) is the causative agent. BFDV has an ∼2 kb single stranded circular DNA genome encoding just two proteins (Rep and CP). In this study we provide support for demarcation of BFDV strains by phylogenetic analysis of 65 complete genomes from databases and 22 new BFDV sequences isolated from infected psittacines in South Africa. We propose 94 % genome-wide sequence identity as a strain demarcation threshold, with isolates sharing >94 % identity belonging to the same strain, and strain subtypes sharing >98 % identity. Currently, BFDV diversity falls within 14 strains, with five highly divergent isolates from budgerigars probably representing a new species of circovirus with three strains (budgerigar circovirus; BCV-A, -B and -C). The geographical distribution of BFDV and BCV strains is strongly linked to the international trade in exotic birds; strains with more than one host are generally located in the same geographical area. Lastly, we examined BFDV and BCV sequences for evidence of recombination, and determined that recombination had occurred in most BFDV and BCV strains. We established that there were two globally significant recombination hotspots in the viral genome: the first is along the entire intergenic region and the second is in the C-terminal portion of the CP ORF. The implications of our results for the taxonomy and classification of circoviruses are discussed.


Article metrics loading...

Loading full text...

Full text loading...



  1. Abascal, F., Zardoya, R. & Posada, D.(2005). ProtTest: selection of best-fit models of protein evolution. Bioinformatics 21, 2104–2105. [CrossRef] [Google Scholar]
  2. Albertyn, J., Tajbhai, K. M. & Bragg, R. R.(2004). Psittacine beak and feather disease virus in budgerigars and ring-neck parakeets in South Africa. Onderstepoort J Vet Res 71, 29–34. [Google Scholar]
  3. Bassami, M. R., Berryman, D., Wilcox, G. E. & Raidal, S. R.(1998). Psittacine beak and feather disease virus nucleotide sequence analysis and its relationship to porcine circovirus, plant circoviruses, and chicken anaemia virus. Virology 249, 453–459. [CrossRef] [Google Scholar]
  4. Bassami, M. R., Ypelaar, I., Berryman, D., Wilcox, G. E. & Raidal, S. R.(2001). Genetic diversity of beak and feather disease virus detected in psittacine species in Australia. Virology 279, 392–400. [CrossRef] [Google Scholar]
  5. Bendheim, U., Karnieli, A., Perl, S., Lublin, A. & Davidson, I.(2006). Prevalence of psittacine circovirus in Israel. Isr J Vet Med 61, 12–15. [Google Scholar]
  6. Bert, E., Tomassone, L., Peccati, C., Navarrete, M. G. & Sola, S. C.(2005). Detection of beak and feather disease virus (BFDV) and avian polyomavirus (APV) DNA in psittacine birds in Italy. J Vet Med B Infect Dis Vet Public Health 52, 64–68.[CrossRef] [Google Scholar]
  7. Boni, M. F., Posada, D. & Feldman, M. W.(2007). An exact nonparametric method for inferring mosaic structure in sequence triplets. Genetics 176, 1035–1047. [Google Scholar]
  8. Crowther, R. A., Berriman, J. A., Curran, W. L., Allan, G. M. & Todd, D.(2003). Comparison of the structures of three circoviruses: chicken anemia virus, porcine circovirus type 2, and beak and feather disease virus. J Virol 77, 13036–13041. [CrossRef] [Google Scholar]
  9. de Kloet, E. & de Kloet, S. R.(2004). Analysis of the beak and feather disease viral genome indicates the existence of several genotypes which have a complex psittacine host specificity. Arch Virol 149, 2393–2412. [CrossRef] [Google Scholar]
  10. Doneley, R. J.(2003). Acute beak and feather disease in juvenile African grey parrots – an uncommon presentation of a common disease. Aust Vet J 81, 206–207. [CrossRef] [Google Scholar]
  11. Duffy, S. & Holmes, E. C.(2009). Validation of high rates of nucleotide substitution in geminiviruses: phylogenetic evidence from East African cassava mosaic viruses. J Gen Virol 90, 1539–1547. [CrossRef] [Google Scholar]
  12. Fauquet, C. M., Briddon, R. W., Brown, J. K., Moriones, E., Stanley, J., Zerbini, M. & Zhou, X.(2008). Geminivirus strain demarcation and nomenclature. Arch Virol 153, 783–821. [CrossRef] [Google Scholar]
  13. Gibbs, M. J., Armstrong, J. S. & Gibbs, A. J.(2000). Sister-scanning: a Monte Carlo procedure for assessing signals in recombinant sequences. Bioinformatics 16, 573–582. [CrossRef] [Google Scholar]
  14. Guindon, S. & Gascuel, O.(2003). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52, 696–704. [CrossRef] [Google Scholar]
  15. Ha, H. J., Anderson, I. L., Alley, M. R., Springett, B. P. & Gartrell, B. D.(2007). The prevalence of beak and feather disease virus infection in wild populations of parrots and cockatoos in New Zealand. N Z Vet J 55, 235–238.[CrossRef] [Google Scholar]
  16. Harkins, G. W., Delport, W., Duffy, S., Wood, N., Monjane, A. L., Owor, B. E., Donaldson, L., Saumtally, S., Triton, G. & other authors(2009). Experimental evidence indicating that mastreviruses probably did not co-diverge with their hosts. Virol J 6, 104. [CrossRef] [Google Scholar]
  17. Heath, L., Martin, D. P., Warburton, L., Perrin, M., Horsfield, W., Kingsley, C., Rybicki, E. P. & Williamson, A. L.(2004). Evidence of unique genotypes of Beak and feather disease virus in Southern Africa. J Virol 78, 9277–9284. [CrossRef] [Google Scholar]
  18. Heath, L., Williamson, A. L. & Rybicki, E. P.(2006). The capsid protein of beak and feather disease virus binds to the viral DNA and is responsible for transporting the replication-associated protein into the nucleus. J Virol 80, 7219–7225. [CrossRef] [Google Scholar]
  19. Hughes, A. L. & Piontkivska, H.(2008). Nucleotide sequence polymorphism in circoviruses. Infect Genet Evol 8, 130–138. [CrossRef] [Google Scholar]
  20. Khalesi, B., Bonne, N., Stewart, M., Sharp, M. & Raidal, S.(2005). A comparison of haemagglutination, haemagglutination inhibition and PCR for the detection of psittacine beak and feather disease virus infection and a comparison of isolates obtained from loriids. J Gen Virol 86, 3039–3046. [CrossRef] [Google Scholar]
  21. Kiatipattanasakul-Banlunara, W., Tantileartcharoen, R., Katayama, K., Suzuki, K., Lekdumrogsak, T., Nakayama, H. & Doi, K.(2002). Psittacine beak and feather disease in three captive sulphur-crested cockatoos (Cacatua galerita) in Thailand. J Vet Med Sci 64, 527–529. [CrossRef] [Google Scholar]
  22. Kosakovsky Pond, S. L. & Frost, S. D.(2005). Not so different after all: a comparison of methods for detecting amino acid sites under selection. Mol Biol Evol 22, 1208–1222. [CrossRef] [Google Scholar]
  23. Lefeuvre, P., Martin, D. P., Hoareau, M., Naze, F., Delatte, H., Thierry, M., Varsani, A., Becker, N., Reynaud, B. & Lett, J. M.(2007). Begomovirus ‘melting pot’ in the south-west Indian Ocean islands: molecular diversity and evolution through recombination. J Gen Virol 88, 3458–3468. [CrossRef] [Google Scholar]
  24. Lefeuvre, P., Lett, J. M., Varsani, A. & Martin, D. P.(2009). Widely conserved recombination patterns among single-stranded DNA viruses. J Virol 83, 2697–2707. [CrossRef] [Google Scholar]
  25. Li, L., Kapoor, A., Slikas, B., Bamidele, O. S., Wang, C., Shaukat, S., Masroor, M. A., Wilson, M. L., Ndjango, J.-B. N. & other authors(2010). Multiple diverse circoviruses infect farm animals and are commonly found in human and chimpanzee feces. J Virol 84, 1674–1682. [CrossRef] [Google Scholar]
  26. Martin, D. & Rybicki, E.(2000).rdp: detection of recombination amongst aligned sequences. Bioinformatics 16, 562–563. [CrossRef] [Google Scholar]
  27. Martin, D. P., Posada, D., Crandall, K. A. & Williamson, C.(2005a). A modified bootscan algorithm for automated identification of recombinant sequences and recombination breakpoints. AIDS Res Hum Retroviruses 21, 98–102. [CrossRef] [Google Scholar]
  28. Martin, D. P., Williamson, C. & Posada, D.(2005b). RDP2: recombination detection and analysis from sequence alignments. Bioinformatics 21, 260–262. [CrossRef] [Google Scholar]
  29. Meehan, B. M., Creelan, J. L., McNulty, M. S. & Todd, D.(1997). Sequence of porcine circovirus DNA: affinities with plant circoviruses. J Gen Virol 78, 221–227. [Google Scholar]
  30. Niagro, F. D., Forsthoefel, A. N., Lawther, R. P., Kamalanathan, L., Ritchie, B. W., Latimer, K. S. & Lukert, P. D.(1998). Beak and feather disease virus and porcine circovirus genomes: intermediates between the geminiviruses and plant circoviruses. Arch Virol 143, 1723–1744. [CrossRef] [Google Scholar]
  31. Ogawa, H., Katoh, H., Sanada, N., Sanada, Y., Ohya, K., Yamaguchi, T. & Fukushi, H.(2010). A novel genotype of beak and feather disease virus in budgerigars (Melopsittacus undulatus). Virus Genes 2, 231–235. [Google Scholar]
  32. Ortiz-Catedral, L., Kurenbach, B., Massaro, M., McInnes, K., Brunton, D. H., Hauber, M. E., Martin, D. P. & Varsani, A.(2010). A new isolate of beak and feather disease virus from endemic wild red-fronted parakeets (Cyanoramphus novaezelandiae) in New Zealand. Arch Virol 155, 613–620. [CrossRef] [Google Scholar]
  33. Padidam, M., Sawyer, S. & Fauquet, C. M.(1999). Possible emergence of new geminiviruses by frequent recombination. Virology 265, 218–225. [CrossRef] [Google Scholar]
  34. Pass, D. A. & Perry, R. A.(1984). The pathology of psittacine beak and feather disease. Aust Vet J 61, 69–74. [CrossRef] [Google Scholar]
  35. Pond, S. L. & Frost, S. D.(2005). Datamonkey: rapid detection of selective pressure on individual sites of codon alignments. Bioinformatics 21, 2531–2533. [CrossRef] [Google Scholar]
  36. Posada, D.(2006). ModelTest Server: a web-based tool for the statistical selection of models of nucleotide substitution online. Nucleic Acids Res 34 (Web Server), W700–W703. [CrossRef] [Google Scholar]
  37. Posada, D. & Crandall, K. A.(2002). The effect of recombination on the accuracy of phylogeny estimation. J Mol Evol 54, 396–402.[CrossRef] [Google Scholar]
  38. Rahaus, M. & Wolff, M. H.(2003). Psittacine beak and feather disease: a first survey of the distribution of beak and feather disease virus inside the population of captive psittacine birds in Germany. J Vet Med B Infect Dis Vet Public Health 50, 368–371.[CrossRef] [Google Scholar]
  39. Raidal, S. R. & Cross, G. M.(1994a). Control by vaccination of psittacine beak and feather disease in a mixed flock of Agapornis spp. Aust Vet Pract 24, 178–180. [Google Scholar]
  40. Raidal, S. R., McElnea, C. L. & Cross, G. M.(1993). Seroprevalence of psittacine beak and feather disease in wild psittacine birds in New South Wales. Aust Vet J 70, 137–139. [CrossRef] [Google Scholar]
  41. Raue, R., Johne, R., Crosta, L., Bürkle, M., Gerlach, H. & Müller, H.(2004). Nucleotide sequence analysis of a C1 gene fragment of psittacine beak and feather disease virus amplified by real-time polymerase chain reaction indicates a possible existence of genotypes. Avian Pathol 33, 41–50. [CrossRef] [Google Scholar]
  42. Ritchie, B. W., Niagro, F. D., Lukert, P. D., Steffens, W. L., III & Latimer, K. S.(1989). Characterization of a new virus from cockatoos with psittacine beak and feather disease. Virology 171, 83–88. [CrossRef] [Google Scholar]
  43. Ritchie, B. W., Niagro, F. D., Latimer, K. S., Lukert, P. D., Steffens, W. L., III, Rakich, P. M. & Pritchard, N.(1990). Ultrastructural, protein composition, and antigenic comparison of psittacine beak and feather disease virus purified from four genera of psittacine birds. J Wildl Dis 26, 196–203.[CrossRef] [Google Scholar]
  44. Ritchie, P. A., Anderson, I. L. & Lambert, D. M.(2003). Evidence for specificity of psittacine beak and feather disease viruses among avian hosts. Virology 306, 109–115. [CrossRef] [Google Scholar]
  45. Sanada, Y., Sanada, N. & Kubo, M.(1999). Electron microscopical observations of psittacine beak and feather disease in an umbrella cockatoo (Cacatua alba). J Vet Med Sci 61, 1063–1065. [CrossRef] [Google Scholar]
  46. Schoemaker, N. J., Dorrestein, G. M., Latimer, K. S., Lumeij, J. T., Kik, M. J., van der Hage, M. H. & Campagnoli, R. P.(2000). Severe leukopenia and liver necrosis in young African grey parrots (Psittacus erithacus erithacus) infected with psittacine circovirus. Avian Dis 44, 470–478. [CrossRef] [Google Scholar]
  47. Shearer, P. L., Bonne, N., Clark, P., Sharp, M. & Raidal, S. R.(2008). Beak and feather disease virus infection in cockatiels (Nymphicus hollandicus). Avian Pathol 37, 75–81. [CrossRef] [Google Scholar]
  48. Shepherd, D. N., Martin, D. P., Lefeuvre, P., Monjane, A. L., Owor, B. E., Rybicki, E. P. & Varsani, A.(2008). A protocol for the rapid isolation of full geminivirus genomes from dried plant tissue. J Virol Methods 149, 97–102. [CrossRef] [Google Scholar]
  49. Smith, J. M.(1992). Analyzing the mosaic structure of genes. J Mol Evol 34, 126–129. [Google Scholar]
  50. Stanley, J., Bisaro, D. M., Briddon, R. W., Brown, J. K., Fauquet, C. M., Harrison, B. D., Rybicki, E. P. & Stenger, D. C.(2005).Geminiviridae. In Virus Taxonomy (VIIIth Report of the ICTV), pp. 301–306. Edited by Fauquet, C. M., Mayo, M. A., Maniloff, J., Desselberger, U. & Ball, L. A.. London. : Elsevier/Academic Press. [Google Scholar]
  51. Studdert, M. J.(1993).Circoviridae: new viruses of pigs, parrots and chickens. Aust Vet J 70, 121–122. [CrossRef] [Google Scholar]
  52. Tamura, K., Dudley, J., Nei, M. & Kumar, S.(2007).mega4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24, 1596–1599. [CrossRef] [Google Scholar]
  53. Thompson, J. D., Higgins, D. G. & Gibson, T. J.(1994).clustalw: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680. [CrossRef] [Google Scholar]
  54. van der Walt, E., Martin, D. P., Varsani, A., Polston, J. E. & Rybicki, E. P.(2008). Experimental observations of rapid Maize streak virus evolution reveal a strand-specific nucleotide substitution bias. Virol J 5, 104. [CrossRef] [Google Scholar]
  55. Varsani, A., Shepherd, D. N., Monjane, A. L., Owor, B. E., Erdmann, J. B., Rybicki, E. P., Peterschmitt, M., Briddon, R. W., Markham, P. G. & other authors(2008). Recombination, decreased host specificity and increased mobility may have driven the emergence of maize streak virus as an agricultural pathogen. J Gen Virol 89, 2063–2074. [CrossRef] [Google Scholar]
  56. Varsani, A., Monjane, A. L., Donaldson, L., Oluwafemi, S., Zinga, I., Komba, E. K., Plakoutene, D., Mandakombo, N., Mboukoulida, J. & other authors(2009). Comparative analysis of Panicum streak virus and Maize streak virus diversity, recombination patterns and phylogeography. Virol J 6, 194. [CrossRef] [Google Scholar]
  57. Varsani, A., de Villiers, G. K., Regnard, G. L., Bragg, R. R., Kondiah, K., Hitzeroth, I. I. & Rybicki, E. P.(2010). A unique isolate of beak and feather disease virus isolated from budgerigars (Melopsittacus undulatus) in South Africa. Arch Virol 155, 435–439. [CrossRef] [Google Scholar]
  58. Vega-Rocha, S., Gronenborn, B., Gronenborn, A. M. & Campos-Olivas, R.(2007). Solution structure of the endonuclease domain from the master replication initiator protein of the nanovirus faba bean necrotic yellows virus and comparison with the corresponding geminivirus and circovirus structures. Biochemistry 46, 6201–6212. [CrossRef] [Google Scholar]
  59. Wirminghaus, J. D., Downs, C. T., Symes, C. T. & Perrin, M. R.(1999). Conservation of the Cape parrot in southern Africa. S Afr J Wildl Res 29, 118–129. [Google Scholar]
  60. Ypelaar, I., Bassami, M. R., Wilcox, G. E. & Raidal, S. R.(1999). A universal polymerase chain reaction for the detection of psittacine beak and feather disease virus. Vet Microbiol 68, 141–148. [CrossRef] [Google Scholar]

Data & Media loading...


vol. , part 4, pp. 752–767.

(a) Pairwise identity plots of beak and feather disease circovirus / budgerigar circovirus (BCV). Distribution of positive and negative selection in the replication protein and coat protein ORFs of beak and feather disease circovirus and budgerigar circovirus determined by fixed effects likelihood methods. Maximum-likelihood phylogenetic tree of the Rep and CP protein sequences of the beak and feather disease circovirus and budgerigar circovirus isolates with strain demarcation. Two-dimensional graphical representation of pairwise (pairwise deletion of gaps) and nucleotide sequence identity of all beak and feather disease circovirus and budgerigar circovirus genomes.

[ Single PDF file] (2.3 MB)


Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error