The ubiquitin–proteasome system plays a central role in the degradation of intracellular proteins and is often required for efficient virus infection. Homologues of ubiquitin are found in all group I nucleopolyhedroviruses (NPVs), but their roles in NPV infection are still unclear. This study found that the specific proteasome inhibitor MG-132 markedly reduced budded virus (BV) production and polyhedrin expression in NPV (BmNPV)-infected BmN-4 cells. Western blot analysis revealed that treatment of cells with MG-132 resulted in delayed and/or dysregulated viral gene product expression. Application of MG-132 significantly reduced BV production when applied up to 12 h post-infection (p.i.), whereas suppression of polyhedrin expression was almost abolished when applied after 6 h p.i. These results suggested that proteosomal degradation of viral and/or host proteins is required at an early stage of infection for efficient polyhedrin expression. To examine further the possible roles of ubiquitin signalling in BmNPV infection, the baculoviral ubiquitin gene () was deleted from the BmNPV genome. Deletion of affected neither BV production nor polyhedrin expression. Furthermore, Western blots also showed that v-UBI was not required for degradation of IE2, which is known as a target viral protein of the ubiquitin–proteasome system.


Article metrics loading...

Loading full text...

Full text loading...



  1. Ciechanover, A., Orian, A. & Schwartz, A. L.(2000). Ubiquitin-mediated proteolysis: biological regulation via destruction. Bioessays 22, 442–451.[CrossRef] [Google Scholar]
  2. Daimon, T., Katsuma, S. & Shimada, T.(2007). Mutational analysis of active site residues of chitinase from Bombyx mori nucleopolyhedrovirus. Virus Res 124, 168–175.[CrossRef] [Google Scholar]
  3. Gomi, S., Zhou, C. E., Yih, W., Majima, K. & Maeda, S.(1997). Deletion analysis of four of eighteen late gene expression factor gene homologues of the baculovirus, BmNPV. Virology 230, 35–47.[CrossRef] [Google Scholar]
  4. Guarino, L. A., Smith, G. & Dong, W.(1995). Ubiquitin is attached to membranes of baculovirus particles by a novel type of phospholipid anchor. Cell 80, 301–309.[CrossRef] [Google Scholar]
  5. Haas, A. L., Katzung, D. J., Reback, P. M. & Guarino, L. A.(1996). Functional characterization of the ubiquitin variant encoded by the baculovirus Autographa californica. Biochemistry 35, 5385–5394.[CrossRef] [Google Scholar]
  6. Imai, N., Matsuda, N., Tanaka, K., Nakano, A., Matsumoto, S. & Kang, W.(2003). Ubiquitin ligase activities of Bombyx mori nucleopolyhedrovirus RING finger proteins. J Virol 77, 923–930.[CrossRef] [Google Scholar]
  7. Imai, N., Matsumoto, S. & Kang, W.(2005). Formation of Bombyx mori nucleopolyhedrovirus IE2 nuclear foci is regulated by the functional domains for oligomerization and ubiquitin ligase activity. J Gen Virol 86, 637–644.[CrossRef] [Google Scholar]
  8. Kamita, S. G. & Maeda, S.(1997). Sequencing of the putative DNA helicase-encoding gene of the Bombyx mori nuclear polyhedrosis virus and fine-mapping of a region involved in host range expansion. Gene 190, 173–179.[CrossRef] [Google Scholar]
  9. Katou, Y., Yamada, H., Ikeda, M. & Kobayashi, M.(2010). A single amino acid substitution modulates low-pH-triggered <1?show=[to]?>membrane fusion of GP64 protein in Autographa californica and Bombyx mori nucleopolyhedroviruses. Virology 404, 204–214.[CrossRef] [Google Scholar]
  10. Katsuma, S., Hatae, N., Yano, T., Ruike, Y., Kimura, M., Hirasawa, A. & Tsujimoto, G.(2005). Free fatty acids inhibit serum deprivation-induced apoptosis through GPR120 in a murine enteroendocrine cell line STC-1. J Biol Chem 280, 19507–19515.[CrossRef] [Google Scholar]
  11. Katsuma, S., Horie, S., Daimon, T., Iwanaga, M. & Shimada, T.(2006a).In vivo and in vitro analyses of a Bombyx mori nucleopolyhedrovirus mutant lacking functional vfgf. Virology 355, 62–70.[CrossRef] [Google Scholar]
  12. Katsuma, S., Daimon, T., Horie, S., Kobayashi, M. & Shimada, T.(2006b).N-linked glycans of Bombyx mori nucleopolyhedrovirus fibroblast growth factor are crucial for its secretion. Biochem Biophys Res Commun 350, 1069–1075.[CrossRef] [Google Scholar]
  13. Katsuma, S., Mita, K. & Shimada, T.(2007). ERK- and JNK-dependent signaling pathways contribute to Bombyx mori nucleopolyhedrovirus infection. J Virol 81, 13700–13709.[CrossRef] [Google Scholar]
  14. Katsuma, S., Kawaoka, S., Mita, K. & Shimada, T.(2008). Genome-wide survey for baculoviral host homologs using the Bombyx genome sequence. Insect Biochem Mol Biol 38, 1080–1086.[CrossRef] [Google Scholar]
  15. Keddie, B. A., Aponte, G. W. & Volkman, L. E.(1989). The pathway of infection of Autographa californica nuclear polyhedrosis virus in an insect host. Science 243, 1728–1730.[CrossRef] [Google Scholar]
  16. Maeda, S. & Majima, K.(1990). Molecular cloning and physical mapping of the genome of Bombyx mori nuclear polyhedrosis virus. J Gen Virol 71, 1851–1855.[CrossRef] [Google Scholar]
  17. Maeda, S., Kawai, T., Obinata, M., Fujiwara, H., Horiuchi, T., Saeki, Y., Sato, Y. & Furusawa, M.(1985). Production of human α-interferon in silkworm using a baculovirus vector. Nature 315, 592–594.[CrossRef] [Google Scholar]
  18. Morishima, N., Okano, K., Shibata, T. & Maeda, S.(1998). Homologous p35 proteins of baculoviruses show distinctive anti-apoptotic activities which correlate with the apoptosis-inducing activity of each virus. FEBS Lett 427, 144–148.[CrossRef] [Google Scholar]
  19. Nakanishi, T., Goto, C., Kobayashi, M., Kang, W., Suzuki, T., Dohmae, N., Matsumoto, S., Shimada, T. & Katsuma, S.(2010). Comparative studies of lepidopteran baculovirus-specific protein FP25K: development of a novel Bombyx mori nucleopolyhedrovirus-based vector with a modified fp25K gene. J Virol 84, 5191–5200.[CrossRef] [Google Scholar]
  20. Okano, K., Mikhailov, V. S. & Maeda, S.(1999). Colocalization of baculovirus IE-1 and two DNA-binding proteins, DBP and LEF-3, to viral replication factories. J Virol 73, 110–119. [Google Scholar]
  21. Raaben, M., Posthuma, C. C., Verheije, M. H., te Lintelo, E. H., Kikkert, M., Drijfhout, J. W., Snijder, E. J., Rottier, P. J. M. & de Haan, C. A. M.(2010). The ubiquitin–proteasome system plays an important role during various stages in the coronavirus infection cycle. J Virol 84, 7869–7879.[CrossRef] [Google Scholar]
  22. Rechsteiner, M.(1991). Natural substrates of the ubiquitin proteolytic pathway. Cell 66, 615–618.[CrossRef] [Google Scholar]
  23. Reilly, L. M. & Guarino, L. A.(1996). The viral ubiquitin gene of Autographa californica nuclear polyhedrosis virus is not essential for viral replication. Virology 218, 243–247.[CrossRef] [Google Scholar]
  24. Satheshkumar, P. S., Anton, L. C., Sanz, P. & Moss, B.(2009). Inhibition of the ubiquitin–proteasome system prevents vaccinia virus DNA replication and expression of intermediate and late genes. J Virol 83, 2469–2479.[CrossRef] [Google Scholar]
  25. Shimada, T., Chan, I. C., Noguchi, Y., Nagata, M. & Kobayashi, M.(1994). Structural and functional abnormality of the polyhedrin gene in a polyhedron-deficient mutant of the Bombyx mori nuclear polyhedrosis virus. J Ser Sci Jpn 63, 353–360. [Google Scholar]
  26. Teale, A., Campbell, S., Buuren, N. V., Magee, W. C., Watmough, K., Couturier, B., Shipclark, R. & Barry, M.(2009). Orthopoxviruses require a functional ubiquitin–proteasome system for productive replication. J Virol 83, 2099–2108.[CrossRef] [Google Scholar]

Data & Media loading...


vol. , part 3, pp. 699 - 705

Effects of MG-132 on cell viability of BmN cells

Generation of recombinant BmNPVs

Confocal microscopic observation of IE2 accumulation [Single PDF file](662 KB)


Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error