1887

Abstract

The four major flavivirus clades are transmitted by mosquitoes, ticks, directly between vertebrates or directly between arthropods, respectively, but the molecular determinants of mode of transmission in flaviviruses are unknown. To assess the role of the UTRs in transmission, we generated chimeric genomes in which the 5′ UTR, capsid and/or 3′ UTR of mosquito-borne dengue virus serotype 4 (rDENV-4) were replaced, separately or in combination, with those of tick-borne Langat virus (rLGTV). None of the chimeric genomes yielded detectable virus following transfection. Replacement of the variable region (VR) in the rDENV-4 3′ UTR with that of rLGTV generated virus rDENV-4-rLGTswapVR, which showed lower replication than its wild-type parents in mammalian but not mosquito cells in culture and was able to infect mosquitoes . Neither rDENV-4 nor rDENV-4-rLGTswapVR could infect larval ticks immersed in virus, while rLGTV was highly infectious via this route.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.026997-0
2011-04-01
2019-11-17
Loading full text...

Full text loading...

/deliver/fulltext/jgv/92/4/841.html?itemId=/content/journal/jgv/10.1099/vir.0.026997-0&mimeType=html&fmt=ahah

References

  1. Alvarez, D. E., De Lella Ezcurra, A. L., Fucito, S. & Gamarnik, A. V. ( 2005; ). Role of RNA structures present at the 3′UTR of dengue virus on translation, RNA synthesis, and viral replication. Virology 339, 200–212. [CrossRef]
    [Google Scholar]
  2. Blaney, J. E., Jr, Johnson, D. H., Firestone, C. Y., Hanson, C. T., Murphy, B. R. & Whitehead, S. S. ( 2001; ). Chemical mutagenesis of dengue virus type 4 yields mutant viruses which are temperature sensitive in Vero cells or human liver cells and attenuated in mice. J Virol 75, 9731–9740. [CrossRef]
    [Google Scholar]
  3. Blaney, J. E., Jr, Manipon, G. G., Firestone, C. Y., Johnson, D. H., Hanson, C. T., Murphy, B. R. & Whitehead, S. S. ( 2003; ). Mutations which enhance the replication of dengue virus type 4 and an antigenic chimeric dengue virus type 2/4 vaccine candidate in Vero cells. Vaccine 21, 4317–4327. [CrossRef]
    [Google Scholar]
  4. Cammisa-Parks, H., Cisar, L. A., Kane, A. & Stollar, V. ( 1992; ). The complete nucleotide sequence of cell fusing agent (CFA): homology between the nonstructural proteins encoded by CFA and the nonstructural proteins encoded by arthropod-borne flaviviruses. Virology 189, 511–524. [CrossRef]
    [Google Scholar]
  5. Campbell, M. S. & Pletnev, A. G. ( 2000; ). Infectious cDNA clones of Langat tick-borne flavivirus that differ from their parent in peripheral neurovirulence. Virology 269, 225–237. [CrossRef]
    [Google Scholar]
  6. Chambers, T. J., Hahn, C. S., Galler, R. & Rice, C. M. ( 1990; ). Flavivirus genome organization, expression, and replication. Annu Rev Microbiol 44, 649–688. [CrossRef]
    [Google Scholar]
  7. Charlier, N., Leyssen, P., Pleij, C. W., Lemey, P., Billoir, F., Van Laethem, K., Vandamme, A. M., De Clercq, E., de Lamballerie, X. & Neyts, J. ( 2002; ). Complete genome sequence of Montana Myotis leukoencephalitis virus, phylogenetic analysis and comparative study of the 3′ untranslated region of flaviviruses with no known vector. J Gen Virol 83, 1875–1885.
    [Google Scholar]
  8. Charlier, N., Molenkamp, R., Leyssen, P., Paeshuyse, J., Drosten, C., Panning, M., De Clercq, E., Bredenbeek, P. J. & Neyts, J. ( 2004; ). Exchanging the yellow fever virus envelope proteins with Modoc virus prM and E proteins results in a chimeric virus that is neuroinvasive in SCID mice. J Virol 78, 7418–7426. [CrossRef]
    [Google Scholar]
  9. Charlier, N., Davidson, A., Dallmeier, K., Molenkamp, R., De Clercq, E. & Neyts, J. ( 2010; ). Replication of not-known-vector flaviviruses in mosquito cells is restricted by intracellular host factors rather than by the viral envelope proteins. J Gen Virol 91, 1693–1697. [CrossRef]
    [Google Scholar]
  10. Cook, S., Bennett, S. N., Holmes, E. C., De Chesse, R., Moureau, G. & de Lamballerie, X. ( 2006; ). Isolation of a new strain of the flavivirus cell fusing agent virus in a natural mosquito population from Puerto Rico. J Gen Virol 87, 735–748. [CrossRef]
    [Google Scholar]
  11. Cook, S., Moureau, G., Harbach, R. E., Mukwaya, L., Goodger, K., Ssenfuka, F., Gould, E., Holmes, E. C. & de Lamballerie, X. ( 2009; ). Isolation of a novel species of flavivirus and a new strain of Culex flavivirus (Flaviviridae) from a natural mosquito population in Uganda. J Gen Virol 90, 2669–2678. [CrossRef]
    [Google Scholar]
  12. Crabtree, M. B., Sang, R. C., Stollar, V., Dunster, L. M. & Miller, B. R. ( 2003; ). Genetic and phenotypic characterization of the newly described insect flavivirus, Kamiti River virus. Arch Virol 148, 1095–1118. [CrossRef]
    [Google Scholar]
  13. Durbin, A. P., Karron, R. A., Sun, W., Vaughn, D. W., Reynolds, M. J., Perreault, J. R., Thumar, B., Men, R., Lai, C. J. & other authors ( 2001; ). Attenuation and immunogenicity in humans of a live dengue virus type-4 vaccine candidate with a 30 nucleotide deletion in its 3′-untranslated region. Am J Trop Med Hyg 65, 405–413.
    [Google Scholar]
  14. Elghonemy, S., Davis, W. G. & Brinton, M. A. ( 2005; ). The majority of the nucleotides in the top loop of the genomic 3′ terminal stem loop structure are cis-acting in a West Nile virus infectious clone. Virology 331, 238–246. [CrossRef]
    [Google Scholar]
  15. Fairbrother, A. & Yuill, T. M. ( 1987; ). Experimental infection and horizontal transmission of Modoc virus in deer mice (Peromyscus maniculatus). J Wildl Dis 23, 179–185.[CrossRef]
    [Google Scholar]
  16. Farfan-Ale, J. A., Loroño-Pino, M. A., Garcia-Rejon, J. E., Hovav, E., Powers, A. M., Lin, M., Dorman, K. S., Platt, K. B., Bartholomay, L. C. & other authors ( 2009; ). Detection of RNA from a novel West Nile-like virus and high prevalence of an insect-specific flavivirus in mosquitoes in the Yucatan Peninsula of Mexico. Am J Trop Med Hyg 80, 85–95.
    [Google Scholar]
  17. Friebe, P. & Harris, E. ( 2010; ). Interplay of RNA elements in the dengue virus 5′ and 3′ ends required for viral RNA replication. J Virol 84, 6103–6118. [CrossRef]
    [Google Scholar]
  18. Gaunt, M. W., Sall, A. A., de Lamballerie, X., Falconar, A. K., Dzhivanian, T. I. & Gould, E. A. ( 2001; ). Phylogenetic relationships of flaviviruses correlate with their epidemiology, disease association and biogeography. J Gen Virol 82, 1867–1876.
    [Google Scholar]
  19. Gould, E. A., de Lamballerie, X., Zanotto, P. M. & Holmes, E. C. ( 2003; ). Origins, evolution, and vector/host coadaptations within the genus Flavivirus. Adv Virus Res 59, 277–314.
    [Google Scholar]
  20. Gritsun, T. S. & Gould, E. A. ( 2006; ). Origin and evolution of 3′UTR of flaviviruses: long direct repeats as a basis for the formation of secondary structures and their significance for virus transmission. Adv Virus Res 69, 203–248.
    [Google Scholar]
  21. Gubler, D. J. ( 1998; ). Dengue and dengue hemorrhagic fever. Clin Microbiol Rev 11, 480–496.
    [Google Scholar]
  22. Gubler, D. J. ( 2002; ). Epidemic dengue/dengue hemorrhagic fever as a public health, social and economic problem in the 21st century. Trends Microbiol 10, 100–103. [CrossRef]
    [Google Scholar]
  23. Hanley, K. A., Lee, J. J., Blaney, J. E., Jr, Murphy, B. R. & Whitehead, S. S. ( 2002; ). Paired charge-to-alanine mutagenesis of dengue virus type 4 NS5 generates mutants with temperature-sensitive, host range, and mouse attenuation phenotypes. J Virol 76, 525–531. [CrossRef]
    [Google Scholar]
  24. Hanley, K. A., Manlucu, L. R., Gilmore, L. E., Blaney, J. E., Jr, Hanson, C. T., Murphy, B. R. & Whitehead, S. S. ( 2003; ). A trade-off in replication in mosquito versus mammalian systems conferred by a point mutation in the NS4B protein of dengue virus type 4. Virology 312, 222–232. [CrossRef]
    [Google Scholar]
  25. Hanley, K. A., Nelson, J. T., Schirtzinger, E. E., Whitehead, S. S. & Hanson, C. T. ( 2008; ). Superior infectivity for mosquito vectors contributes to competitive displacement among strains of dengue virus. BMC Ecol 8, 1. [CrossRef]
    [Google Scholar]
  26. Hoshino, K., Isawa, H., Tsuda, Y., Sawabe, K. & Kobayashi, M. ( 2009; ). Isolation and characterization of a new insect flavivirus from Aedes albopictus and Aedes flavopictus mosquitoes in Japan. Virology 391, 119–129. [CrossRef]
    [Google Scholar]
  27. Huang, C. Y., Silengo, S. J., Whiteman, M. C. & Kinney, R. M. ( 2005; ). Chimeric dengue 2 PDK-53/West Nile NY99 viruses retain the phenotypic attenuation markers of the candidate PDK-53 vaccine virus and protect mice against lethal challenge with West Nile virus. J Virol 79, 7300–7310. [CrossRef]
    [Google Scholar]
  28. Johnson, H. N. ( 1967; ). Ecological implications of antigenically related mammalian viruses for which arthropod vectors are unknown and avian associated soft tick viruses. Jpn J Med Sci Biol 20 (Suppl.), 160–166.
    [Google Scholar]
  29. Kent, R. J., Crabtree, M. B. & Miller, B. R. ( 2010; ). Transmission of West Nile virus by Culex quinquefasciatus say infected with Culex Flavivirus Izabal. PLoS Negl Trop Dis 4, e671. [CrossRef]
    [Google Scholar]
  30. Khromykh, A. A., Meka, H., Guyatt, K. J. & Westaway, E. G. ( 2001; ). Essential role of cyclization sequences in flavivirus RNA replication. J Virol 75, 6719–6728. [CrossRef]
    [Google Scholar]
  31. Kim, D. Y., Guzman, H., Bueno, R., Jr, Dennett, J. A., Auguste, A. J., Carrington, C. V., Popov, V. L., Weaver, S. C., Beasley, D. W. & Tesh, R. B. ( 2009; ). Characterization of Culex flavivirus (Flaviviridae) strains isolated from mosquitoes in the United States and Trinidad. Virology 386, 154–159. [CrossRef]
    [Google Scholar]
  32. Kofler, R. M., Hoenninger, V. M., Thurner, C. & Mandl, C. W. ( 2006; ). Functional analysis of the tick-borne encephalitis virus cyclization elements indicates major differences between mosquito-borne and tick-borne flaviviruses. J Virol 80, 4099–4113. [CrossRef]
    [Google Scholar]
  33. Kuno, G. & Chang, G. J. ( 2005; ). Biological transmission of arboviruses: reexamination of and new insights into components, mechanisms, and unique traits as well as their evolutionary trends. Clin Microbiol Rev 18, 608–637. [CrossRef]
    [Google Scholar]
  34. Kyle, J. L. & Harris, E. ( 2008; ). Global spread and persistence of dengue. Annu Rev Microbiol 62, 71–92. [CrossRef]
    [Google Scholar]
  35. Leyssen, P., Charlier, N., Lemey, P., Billoir, F., Vandamme, A. M., De Clercq, E., de Lamballerie, X. & Neyts, J. ( 2002; ). Complete genome sequence, taxonomic assignment, and comparative analysis of the untranslated regions of the Modoc virus, a flavivirus with no known vector. Virology 293, 125–140. [CrossRef]
    [Google Scholar]
  36. Lodeiro, M. F., Filomatori, C. V. & Gamarnik, A. V. ( 2009; ). Structural and functional studies of the promoter element for dengue virus RNA replication. J Virol 83, 993–1008. [CrossRef]
    [Google Scholar]
  37. Mackenzie, J. S., Gubler, D. J. & Petersen, L. R. ( 2004; ). Emerging flaviviruses: the spread and resurgence of Japanese encephalitis, West Nile and dengue viruses. Nat Med 10 (Suppl.), S98–S109. [CrossRef]
    [Google Scholar]
  38. Mansfield, K. L., Johnson, N., Phipps, L. P., Stephenson, J. R., Fooks, A. R. & Solomon, T. ( 2009; ). Tick-borne encephalitis virus - a review of an emerging zoonosis. J Gen Virol 90, 1781–1794. [CrossRef]
    [Google Scholar]
  39. Markoff, L. ( 2003; ). 5′- and 3′-noncoding regions in flavivirus RNA. Adv Virus Res 59, 177–228.
    [Google Scholar]
  40. Mathews, D. H., Sabina, J., Zuker, M. & Turner, D. H. ( 1999; ). Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J Mol Biol 288, 911–940. [CrossRef]
    [Google Scholar]
  41. Men, R., Bray, M., Clark, D., Chanock, R. M. & Lai, C. J. ( 1996; ). Dengue type 4 virus mutants containing deletions in the 3′ noncoding region of the RNA genome: analysis of growth restriction in cell culture and altered viremia pattern and immunogenicity in rhesus monkeys. J Virol 70, 3930–3937.
    [Google Scholar]
  42. Mitzel, D. N., Wolfinbarger, J. B., Long, R. D., Masnick, M., Best, S. M. & Bloom, M. E. ( 2007; ). Tick-borne flavivirus infection in Ixodes scapularis larvae: development of a novel method for synchronous viral infection of ticks. Virology 365, 410–418. [CrossRef]
    [Google Scholar]
  43. Moureau, G., Ninove, L., Izri, A., Cook, S., De Lamballerie, X. & Charrel, R. N. ( 2010; ). Flavivirus RNA in phlebotomine sandflies. Vector Borne Zoonotic Dis. 10, 195–197. [CrossRef]
    [Google Scholar]
  44. Munderloh, U. G., Liu, Y., Wang, M., Chen, C. & Kurtti, T. J. ( 1994; ). Establishment, maintenance and description of cell lines from the tick Ixodes scapularis. J Parasitol 80, 533–543. [CrossRef]
    [Google Scholar]
  45. Murray, C. L., Jones, C. T. & Rice, C. M. ( 2008; ). Architects of assembly: roles of Flaviviridae non-structural proteins in virion morphogenesis. Nat Rev Microbiol 6, 699–708. [CrossRef]
    [Google Scholar]
  46. Padmanabhan, P. R. & Strongin, A. Y. ( 2010; ). Translation and processing of the Dengue virus polyprotein. In Frontiers in Dengue Virus Research, illustrated edn, pp. 13–34. Edited by Hanley, K. A. & Weaver, S. C.. Norfolk. : Caister Academic Press.
    [Google Scholar]
  47. Pletnev, A. G. & Men, R. ( 1998; ). Attenuation of the Langat tick-borne flavivirus by chimerization with mosquito-borne flavivirus dengue type 4. Proc Natl Acad Sci U S A 95, 1746–1751. [CrossRef]
    [Google Scholar]
  48. Pletnev, A. G., Bray, M., Huggins, J. & Lai, C. J. ( 1992; ). Construction and characterization of chimeric tick-borne encephalitis/dengue type 4 viruses. Proc Natl Acad Sci U S A 89, 10532–10536. [CrossRef]
    [Google Scholar]
  49. Pletnev, A. G., Bray, M., Hanley, K. A., Speicher, J. & Elkins, R. ( 2001; ). Tick-borne Langat/mosquito-borne dengue flavivirus chimera, a candidate live attenuated vaccine for protection against disease caused by members of the tick-borne encephalitis virus complex: evaluation in rhesus monkeys and in mosquitoes. J Virol 75, 8259–8267. [CrossRef]
    [Google Scholar]
  50. Pletnev, A. G., Putnak, R., Speicher, J., Wagar, E. J. & Vaughn, D. W. ( 2002; ). West Nile virus/dengue type 4 virus chimeras that are reduced in neurovirulence and peripheral virulence without loss of immunogenicity or protective efficacy. Proc Natl Acad Sci U S A 99, 3036–3041. [CrossRef]
    [Google Scholar]
  51. Proutski, V., Gaunt, M. W., Gould, E. A. & Holmes, E. C. ( 1997a; ). Secondary structure of the 3′-untranslated region of yellow fever virus: implications for virulence, attenuation and vaccine development. J Gen Virol 78, 1543–1549.
    [Google Scholar]
  52. Proutski, V., Gould, E. A. & Holmes, E. C. ( 1997b; ). Secondary structure of the 3′ untranslated region of flaviviruses: similarities and differences. Nucleic Acids Res 25, 1194–1202. [CrossRef]
    [Google Scholar]
  53. Romero, T. A., Tumban, E., Jun, J., Lott, W. B. & Hanley, K. A. ( 2006; ). Secondary structure of dengue virus type 4 3′ untranslated region: impact of deletion and substitution mutations. J Gen Virol 87, 3291–3296. [CrossRef]
    [Google Scholar]
  54. Sang, R. C., Gichogo, A., Gachoya, J., Dunster, M. D., Ofula, V., Hunt, A. R., Crabtree, M. B., Miller, B. R. & Dunster, L. M. ( 2003; ). Isolation of a new flavivirus related to cell fusing agent virus (CFAV) from field-collected flood-water Aedes mosquitoes sampled from a dambo in central Kenya. Arch Virol 148, 1085–1093. [CrossRef]
    [Google Scholar]
  55. Tajima, S., Nukui, Y., Takasaki, T. & Kurane, I. ( 2007; ). Characterization of the variable region in the 3′ non-translated region of dengue type 1 virus. J Gen Virol 88, 2214–2222. [CrossRef]
    [Google Scholar]
  56. Thurner, C., Witwer, C., Hofacker, I. L. & Stadler, P. F. ( 2004; ). Conserved RNA secondary structures in Flaviviridae genomes. J Gen Virol 85, 1113–1124. [CrossRef]
    [Google Scholar]
  57. Troyer, J. M., Hanley, K. A., Whitehead, S. S., Strickman, D., Karron, R. A., Durbin, A. P. & Murphy, B. R. ( 2001; ). A live attenuated recombinant dengue-4 virus vaccine candidate with restricted capacity for dissemination in mosquitoes and lack of transmission from vaccinees to mosquitoes. Am J Trop Med Hyg 65, 414–419.
    [Google Scholar]
  58. van den Hurk, A. F., Ritchie, S. A. & Mackenzie, J. S. ( 2009; ). Ecology and geographical expansion of Japanese encephalitis virus. Annu Rev Entomol 54, 17–35. [CrossRef]
    [Google Scholar]
  59. Yu, L. & Markoff, L. ( 2005; ). The topology of bulges in the long stem of the flavivirus 3′ stem-loop is a major determinant of RNA replication competence. J Virol 79, 2309–2324. [CrossRef]
    [Google Scholar]
  60. Yu, L., Nomaguchi, M., Padmanabhan, R. & Markoff, L. ( 2008; ). Specific requirements for elements of the 5′ and 3′ terminal regions in flavivirus RNA synthesis and viral replication. Virology 374, 170–185. [CrossRef]
    [Google Scholar]
  61. Zeng, L., Falgout, B. & Markoff, L. ( 1998; ). Identification of specific nucleotide sequences within the conserved 3′-SL in the dengue type 2 virus genome required for replication. J Virol 72, 7510–7522.
    [Google Scholar]
  62. Zuker, M. ( 2003; ). mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31, 3406–3415. [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.026997-0
Loading
/content/journal/jgv/10.1099/vir.0.026997-0
Loading

Data & Media loading...

Supplements

vol. , part 4, pp. 841 - 848

RNA replication of rDENV-4, rDENV-4-LGTswapVR, and rLGTV in larvae

Primers used for cloning, RT-PCR and nuclease mapping [Single PDF file](122 KB)



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error