Inflammatory immune responses triggered initially to clear West Nile virus (WNV) infection later become detrimental and contribute to the pathological processes such as blood–brain barrier (BBB) disruption and neuronal death, thus complicating WNV-associated encephalitis (WNVE). It has been demonstrated previously that WNV infection in astrocytes results in induction of multiple matrix metalloproteinases (MMPs), which mediate BBB disruption. Cyclooxygenase (COX) enzymes and their product, prostaglandin E2 (PGE2), modulate neuroinflammation and regulate the production of multiple inflammatory molecules including MMPs. Therefore, this study determined and characterized the pathophysiological consequences of the expression of COX enzymes in human brain cortical astrocytes (HBCAs) following WNV infection. Whilst COX-1 mRNA expression did not change, WNV infection significantly induced RNA and protein expression of COX-2 in HBCAs. Similarly, PGE2 production was also enhanced significantly in infected HBCAs and was blocked in the presence of the COX-2-specific inhibitor NS-398, thus suggesting that COX-2, and not COX-1, was the source of the increased PGE2. Treatment of infected HBCAs with NS-398 attenuated the expression of MMP-1, -3 and -9 in a dose-dependent manner. Similarly, expression of interleukin-1, -6 and -8, which were markedly elevated in infected HBCAs, exhibited a significant reduction in their levels in the presence of NS-398. These results provide direct evidence that WNV-induced COX-2/PGE2 is involved in modulating the expression of multiple neuroinflammatory mediators, thereby directly linking COX-2 with WNV disease pathogenesis. The ability of COX-2 inhibitors to modulate WNV-induced COX-2 and PGE2 signalling warrants further investigation in an animal model as a potential approach for clinical management of neuroinflammation associated with WNVE.


Article metrics loading...

Loading full text...

Full text loading...



  1. Aid, S., Silva, A. C., Candelario-Jalil, E., Choi, S. H., Rosenberg, G. A. & Bosetti, F.(2010). Cyclooxygenase-1 and -2 differentially modulate lipopolysaccharide-induced blood−brain barrier disruption through matrix metalloproteinase activity. J Cereb Blood Flow Metab 30, 370–380.[CrossRef] [Google Scholar]
  2. Aktas, O., Ullrich, O., Infante-Duarte, C., Nitsch, R. & Zipp, F.(2007). Neuronal damage in brain inflammation. Arch Neurol 64, 185–189.[CrossRef] [Google Scholar]
  3. Alvarez, S., Blanco, A., Kern, F., Fresno, M. & Munoz-Fernandez, M. A.(2008). HIV-2 induces NF-κB activation and cyclooxygenase-2 expression in human astroglial cells. Virology 380, 144–151.[CrossRef] [Google Scholar]
  4. Arjona, A., Foellmer, H. G., Town, T., Leng, L., McDonald, C., Wang, T., Wong, S. J., Montgomery, R. R., Fikrig, E. & Bucala, R.(2007). Abrogation of macrophage migration inhibitory factor decreases West Nile virus lethality by limiting viral neuroinvasion. J Clin Invest 117, 3059–3066.[CrossRef] [Google Scholar]
  5. Baek, J. Y., Hur, W., Wang, J. S., Bae, S. H. & Yoon, S. K.(2007). Selective COX-2 inhibitor, NS-398, suppresses cellular proliferation in human hepatocellular carcinoma cell lines via cell cycle arrest. World J Gastroenterol 13, 1175–1181.[CrossRef] [Google Scholar]
  6. Bazan, N. G.(2001). COX-2 as a multifunctional neuronal modulator. Nat Med 7, 414–415.[CrossRef] [Google Scholar]
  7. Bazan, N. G., Colangelo, V. & Lukiw, W. J.(2002). Prostaglandins and other lipid mediators in Alzheimer's disease. Prostaglandins Other Lipid Mediat 68–69, 197–210. [Google Scholar]
  8. Brabers, N. A. & Nottet, H. S.(2006). Role of the pro-inflammatory cytokines TNF-α and IL-1β in HIV-associated dementia. Eur J Clin Invest 36, 447–458.[CrossRef] [Google Scholar]
  9. Brinton, M. A.(2002). The molecular biology of West Nile virus: a new invader of the western hemisphere. Annu Rev Microbiol 56, 371–402.[CrossRef] [Google Scholar]
  10. Candelario-Jalil, E. & Fiebich, B. L.(2008). Cyclooxygenase inhibition in ischemic brain injury. Curr Pharm Des 14, 1401–1418.[CrossRef] [Google Scholar]
  11. Candelario-Jalil, E., González-Falcón, A., García-Cabrera, M., Álvarez, D., Al-Dalain, S., Martínez, G., León, O. S. & Springer, J. E.(2003). Assessment of the relative contribution of COX-1 and COX-2 isoforms to ischemia-induced oxidative damage and neurodegeneration following transient global cerebral ischemia. J Neurochem 86, 545–555.[CrossRef] [Google Scholar]
  12. Candelario-Jalil, E., Mhadu, N. H., González-Falcón, A., García-Cabrera, M., Muñoz, E., León, O. S. & Fiebich, B. L.(2005). Effects of the cyclooxygenase-2 inhibitor nimesulide on cerebral infarction and neurological deficits induced by permanent middle cerebral artery occlusion in the rat. J Neuroinflammation 2, 3.[CrossRef] [Google Scholar]
  13. Candelario-Jalil, E., Taheri, S., Yang, Y., Sood, R., Grossetete, M., Estrada, E. Y., Fiebich, B. L. & Rosenberg, G. A.(2007). Cyclooxygenase inhibition limits blood−brain barrier disruption following intracerebral injection of tumor necrosis factor-α in the rat. J Pharmacol Exp Ther 323, 488–498.[CrossRef] [Google Scholar]
  14. Carey, M. A., Bradbury, J. A., Seubert, J. M., Langenbach, R., Zeldin, D. C. & Germolec, D. R.(2005). Contrasting effects of cyclooxygenase-1 (COX-1) and COX-2 deficiency on the host response to influenza A viral infection. J Immunol 175, 6878–6884.[CrossRef] [Google Scholar]
  15. Cheeran, M. C., Hu, S., Sheng, W. S., Rashid, A., Peterson, P. K. & Lokensgard, J. R.(2005). Differential responses of human brain cells to West Nile virus infection. J Neurovirol 11, 512–524.[CrossRef] [Google Scholar]
  16. Chen, N., Warner, J. L. & Reiss, C. S.(2000). NSAID treatment suppresses VSV propagation in mouse CNS. Virology 276, 44–51.[CrossRef] [Google Scholar]
  17. Chen, N., Restivo, A. & Reiss, C. S.(2002). Selective inhibition of COX-2 is beneficial to mice infected intranasally with VSV. Prostaglandins Other Lipid Mediat 67, 143–155.[CrossRef] [Google Scholar]
  18. Conant, K., St Hillaire, C., Anderson, C., Galey, D., Wang, J. & Nath, A.(2004). Human immunodeficiency virus type 1 Tat and methamphetamine affect the release and activation of matrix-degrading proteinases. J Neurovirol 10, 21–28.[CrossRef] [Google Scholar]
  19. East, E., Baker, D., Pryce, G., Lijnen, H. R., Cuzner, M. L. & Gveric, D.(2005). A role for the plasminogen activator system in inflammation and neurodegeneration in the central nervous system during experimental allergic encephalomyelitis. Am J Pathol 167, 545–554.[CrossRef] [Google Scholar]
  20. Ferri, C. C. & Ferguson, A. V.(2005). Prostaglandin E2 mediates cellular effects of interleukin-1β on parvocellular neurones in the paraventricular nucleus of the hypothalamus. J Neuroendocrinol 17, 498–508.[CrossRef] [Google Scholar]
  21. Flora, G., Pu, H., Hennig, B. & Toborek, M.(2006). Cyclooxygenase-2 is involved in HIV-1 Tat-induced inflammatory responses in the brain. Neuromolecular Med 8, 337–352.[CrossRef] [Google Scholar]
  22. Garcia-Tapia, D., Hassett, D. E., Mitchell, W. J., Jr, Johnson, G. C. & Kleiboeker, S. B.(2007). West Nile virus encephalitis: sequential histopathological and immunological events in a murine model of infection. J Neurovirol 13, 130–138.[CrossRef] [Google Scholar]
  23. Gebicke-Haerter, P. J.(2001). Microglia in neurodegeneration: molecular aspects. Microsc Res Tech 54, 47–58.[CrossRef] [Google Scholar]
  24. Ghoshal, A., Das, S., Ghosh, S., Mishra, M. K., Sharma, V., Koli, P., Sen, E. & Basu, A.(2007). Proinflammatory mediators released by activated microglia induces neuronal death in Japanese encephalitis. Glia 55, 483–496.[CrossRef] [Google Scholar]
  25. Glass, W. G., Lim, J. K., Cholera, R., Pletnev, A. G., Gao, J. L. & Murphy, P. M.(2005). Chemokine receptor CCR5 promotes leukocyte trafficking to the brain and survival in West Nile virus infection. J Exp Med 202, 1087–1098.[CrossRef] [Google Scholar]
  26. Glass, W. G., McDermott, D. H., Lim, J. K., Lekhong, S., Yu, S. F., Frank, W. A., Pape, J., Cheshier, R. C. & Murphy, P. M.(2006). CCR5 deficiency increases risk of symptomatic West Nile virus infection. J Exp Med 203, 35–40.[CrossRef] [Google Scholar]
  27. Hickey, R. W., Adelson, P. D., Johnnides, M. J., Davis, D. S., Yu, Z., Rose, M. E., Chang, Y. F. & Graham, S. H.(2007). Cyclooxygenase-2 activity following traumatic brain injury in the developing rat. Pediatr Res 62, 271–276.[CrossRef] [Google Scholar]
  28. Im, J. Y., Kim, D., Paik, S. G. & Han, P. L.(2006). Cyclooxygenase-2-dependent neuronal death proceeds via superoxide anion generation. Free Radic Biol Med 41, 960–972.[CrossRef] [Google Scholar]
  29. Iwamoto, J., Mizokami, Y., Takahashi, K., Matsuoka, T. & Matsuzaki, Y.(2008). The effects of cyclooxygenase2−prostaglandinE2 pathway on Helicobacter pylori-induced urokinase-type plasminogen activator system in the gastric cancer cells. Helicobacter 13, 174–182.[CrossRef] [Google Scholar]
  30. Johnatty, R. N., Taub, D. D., Reeder, S. P., Turcovski-Corrales, S. M., Cottam, D. W., Stephenson, T. J. & Rees, R. C.(1997). Cytokine and chemokine regulation of proMMP-9 and TIMP-1 production by human peripheral blood lymphocytes. J Immunol 158, 2327–2333. [Google Scholar]
  31. Kelley, T. W., Prayson, R. A., Ruiz, A. I., Isada, C. M. & Gordon, S. M.(2003). The neuropathology of West Nile virus meningoencephalitis. A report of two cases and review of the literature. Am J Clin Pathol 119, 749–753.[CrossRef] [Google Scholar]
  32. Keogh, B., Sheahan, B. J., Atkins, G. J. & Mills, K. H.(2003). Inhibition of matrix metalloproteinases ameliorates blood−brain barrier disruption and neuropathological lesions caused by avirulent Semliki Forest virus infection. Vet Immunol Immunopathol 94, 185–190.[CrossRef] [Google Scholar]
  33. Klein, R. S., Lin, E., Zhang, B., Luster, A. D., Tollett, J., Samuel, M. A., Engle, M. & Diamond, M. S.(2005). Neuronal CXCL10 directs CD8+ T-cell recruitment and control of West Nile virus encephalitis. J Virol 79, 11457–11466.[CrossRef] [Google Scholar]
  34. Kumar, M., Verma, S. & Nerurkar, V. R.(2010). Pro-inflammatory cytokines derived from West Nile virus (WNV)-infected SK-N-SH cells mediate neuroinflammatory markers and neuronal death. J Neuroinflammation 7, 73.[CrossRef] [Google Scholar]
  35. Kyrkanides, S., Moore, A. H., Olschowka, J. A., Daeschner, J. C., Williams, J. P., Hansen, J. T. & Kerry O'Banion, M.(2002). Cyclooxygenase-2 modulates brain inflammation-related gene expression in central nervous system radiation injury. Brain Res Mol Brain Res 104, 159–169.[CrossRef] [Google Scholar]
  36. Lim, J. K., Glass, W. G., McDermott, D. H. & Murphy, P. M.(2006). CCR5: no longer a “good for nothing” gene – chemokine control of West Nile virus infection. Trends Immunol 27, 308–312.[CrossRef] [Google Scholar]
  37. Lu, L., Wei, L., Peng, G., Mu, Y., Wu, K., Kang, L., Yan, X., Zhu, Y. & Wu, J.(2008). NS3 protein of hepatitis C virus regulates cyclooxygenase-2 expression through multiple signaling pathways. Virology 371, 61–70.[CrossRef] [Google Scholar]
  38. Mark, K. S., Trickler, W. J. & Miller, D. W.(2001). Tumor necrosis factor-α induces cyclooxygenase-2 expression and prostaglandin release in brain microvessel endothelial cells. J Pharmacol Exp Ther 297, 1051–1058. [Google Scholar]
  39. McColl, B. W., Rothwell, N. J. & Allan, S. M.(2008). Systemic inflammation alters the kinetics of cerebrovascular tight junction disruption after experimental stroke in mice. J Neurosci 28, 9451–9462.[CrossRef] [Google Scholar]
  40. Molina-Holgado, E., Arévalo-Martín, A., Ortiz, S., Vela, J. M. & Guaza, C.(2002). Theiler's virus infection induces the expression of cyclooxygenase-2 in murine astrocytes: inhibition by the anti-inflammatory cytokines interleukin-4 and interleukin-10. Neurosci Lett 324, 237–241.[CrossRef] [Google Scholar]
  41. Murono, S., Inoue, H., Tanabe, T., Joab, I., Yoshizaki, T., Furukawa, M. & Pagano, J. S.(2001). Induction of cyclooxygenase-2 by Epstein–Barr virus latent membrane protein 1 is involved in vascular endothelial growth factor production in nasopharyngeal carcinoma cells. Proc Natl Acad Sci U S A 98, 6905–6910.[CrossRef] [Google Scholar]
  42. Ottino, P. & Bazan, H. E.(2001). Corneal stimulation of MMP-1, -9 and uPA by platelet-activating factor is mediated by cyclooxygenase-2 metabolites. Curr Eye Res 23, 77–85.[CrossRef] [Google Scholar]
  43. Paul, R., Winkler, F., Bayerlein, I., Popp, B., Pfister, H. W. & Koedel, U.(2005). Urokinase-type plasminogen activator receptor regulates leukocyte recruitment during experimental pneumococcal meningitis. J Infect Dis 191, 776–782.[CrossRef] [Google Scholar]
  44. Pompl, P. N., Ho, L., Bianchi, M., McManus, T., Qin, W. & Pasinetti, G. M.(2003). A therapeutic role for cyclooxygenase-2 inhibitors in a transgenic mouse model of amyotrophic lateral sclerosis. FASEB J 17, 725–727. [Google Scholar]
  45. Radi, Z. A., Meyerholz, D. K. & Ackermann, M. R.(2010). Pulmonary cyclooxygenase-1 (COX-1) and COX-2 cellular expression and distribution after respiratory syncytial virus and parainfluenza virus infection. Viral Immunol 23, 43–48.[CrossRef] [Google Scholar]
  46. Salminen, A., Ojala, J., Suuronen, T., Kaarniranta, K. & Kauppinen, A.(2008). Amyloid-β oligomers set fire to inflammasomes and induce Alzheimer's pathology. J Cell Mol Med 12, 2255–2262.[CrossRef] [Google Scholar]
  47. Sejvar, J. J., Haddad, M. B., Tierney, B. C., Campbell, G. L., Marfin, A. A., Van Gerpen, J. A., Fleischauer, A., Leis, A. A., Stokic, D. S. & Petersen, L. R.(2003). Neurologic manifestations and outcome of West Nile virus infection. JAMA 290, 511–515.[CrossRef] [Google Scholar]
  48. Sellner, J., Simon, F., Meyding-Lamade, U. & Leib, S. L.(2006). Herpes-simplex virus encephalitis is characterized by an early MMP-9 increase and collagen type IV degradation. Brain Res 1125, 155–162.[CrossRef] [Google Scholar]
  49. Shrestha, B., Gottlieb, D. & Diamond, M. S.(2003). Infection and injury of neurons by West Nile encephalitis virus. J Virol 77, 13203–13213.[CrossRef] [Google Scholar]
  50. Thomas, D. M. & Kuhn, D. M.(2005). Cyclooxygenase-2 is an obligatory factor in methamphetamine-induced neurotoxicity. J Pharmacol Exp Ther 313, 870–876. [Google Scholar]
  51. Tzeng, S. F., Hsiao, H. Y. & Mak, O. T.(2005). Prostaglandins and cyclooxygenases in glial cells during brain inflammation. Curr Drug Targets Inflamm Allergy 4, 335–340.[CrossRef] [Google Scholar]
  52. van Marle, G., Antony, J., Ostermann, H., Dunham, C., Hunt, T., Halliday, W., Maingat, F., Urbanowski, M. D., Hobman, T. & other authors(2007). West Nile virus-induced neuroinflammation: glial infection and capsid protein-mediated neurovirulence. J Virol 81, 10933–10949.[CrossRef] [Google Scholar]
  53. Verma, S., Molina, Y., Lo, Y. Y., Cropp, B., Nakano, C., Yanagihara, R. & Nerurkar, V. R.(2008). In vitro effects of selenium deficiency on West Nile virus replication and cytopathogenicity. Virol J 5, 66.[CrossRef] [Google Scholar]
  54. Verma, S., Lo, Y., Chapagain, M., Lum, S., Kumar, M., Gurjav, U., Luo, H., Nakatsuka, A. & Nerurkar, V. R.(2009). West Nile virus infection modulates human brain microvascular endothelial cells tight junction proteins and cell adhesion molecules: transmigration across the in vitro blood−brain barrier. Virology 385, 425–433.[CrossRef] [Google Scholar]
  55. Verma, S., Kumar, M., Gurjav, U., Lum, S. & Nerurkar, V. R.(2010). Reversal of West Nile virus-induced blood−brain barrier disruption and tight junction proteins degradation by MMP inhibitor. Virology 397, 130–138.[CrossRef] [Google Scholar]
  56. Wang, T., Town, T., Alexopoulou, L., Anderson, J. F., Fikrig, E. & Flavell, R. A.(2004). Toll-like receptor 3 mediates West Nile virus entry into the brain causing lethal encephalitis. Nat Med 10, 1366–1373.[CrossRef] [Google Scholar]
  57. Wang, P., Dai, J., Bai, F., Kong, K. F., Wong, S. J., Montgomery, R. R., Madri, J. A. & Fikrig, E.(2008). Matrix metalloproteinase 9 facilitates West Nile virus entry into the brain. J Virol 82, 8978–8985.[CrossRef] [Google Scholar]
  58. Yang, H. & Chen, C.(2008). Cyclooxygenase-2 in synaptic signaling. Curr Pharm Des 14, 1443–1451.[CrossRef] [Google Scholar]
  59. Zhao, Y., Lyons, C. E., Jr, Xiao, A., Templeton, D. J., Sang, Q. A., Brew, K. & Hussaini, I. M.(2008). Urokinase directly activates matrix metalloproteinases-9: a potential role in glioblastoma invasion. Biochem Biophys Res Commun 369, 1215–1220.[CrossRef] [Google Scholar]

Data & Media loading...


vol. , part 3, pp. 507 - 515

Primer sequences used for qRT-PCR [PDF](45 KB)


Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error