Recovery of an infectious virus of defined genetic structure entirely from cDNA and the deduction of information about the virus resulting from phenotypic characterization of the mutant is the process of reverse genetics. This approach has been possible for a number of negative-strand RNA viruses since the recovery of rabies virus in 1994. However, the recovery of recombinant orthomyxoviruses posed a greater challenge due to the segmented nature of the genome. It was not until 1999 that such a system was reported for influenza A viruses, but since that time our knowledge of influenza A virus biology has grown dramatically. Annual influenza epidemics are caused not only by influenza A viruses but also by influenza B viruses. In 2002, two groups reported the successful recovery of influenza B virus entirely from cDNA. This has allowed greater depth of study into the biology of these viruses. This review will highlight the advances made in various areas of influenza B virus biology as a result of the development of reverse genetics techniques for these viruses, including (i) the importance of the non-coding regions of the influenza B virus genome; (ii) the generation of novel vaccine strains; (iii) studies into the mechanisms of drug resistance; (iv) the function(s) of viral proteins, both those analogous to influenza A virus proteins and those unique to influenza B viruses. The information generated by the application of influenza B virus reverse genetics systems will continue to contribute to our improved surveillance and control of human influenza.


Article metrics loading...

Loading full text...

Full text loading...



  1. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D. J.(1997). Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25, 3389–3402.[CrossRef] [Google Scholar]
  2. Altschul, S. F., Wootton, J. C., Gertz, E. M., Agarwala, R., Morgulis, A., Schaffer, A. A. & Yu, Y. K.(2005). Protein database searches using compositionally adjusted substitution matrices. FEBS J 272, 5101–5109.[CrossRef] [Google Scholar]
  3. Balannik, V., Lamb, R. A. & Pinto, L. H.(2008). The oligomeric state of the active BM2 ion channel protein of influenza B virus. J Biol Chem 283, 4895–4904.[CrossRef] [Google Scholar]
  4. Barclay, W. S. & Palese, P.(1995). Influenza B viruses with site-specific mutations introduced into the HA gene. J Virol 69, 1275–1279. [Google Scholar]
  5. Baum, E. Z., Wagaman, P. C., Ly, L., Turchi, I., Le, J., Bucher, D. & Bush, K.(2003). A point mutation in influenza B neuraminidase confers resistance to peramivir and loss of slow binding. Antiviral Res 59, 13–22.[CrossRef] [Google Scholar]
  6. Belshe, R. B.(2010). The need for quadrivalent vaccine against seasonal influenza. Vaccine 28 (Suppl 4), D45–D53.[CrossRef] [Google Scholar]
  7. Belshe, R. B., Coelingh, K., Ambrose, C. S., Woo, J. C. & Wu, X.(2010). Efficacy of live attenuated influenza vaccine in children against influenza B viruses by lineage and antigenic similarity. Vaccine 28, 2149–2156.[CrossRef] [Google Scholar]
  8. Betakova, T., Nermut, M. V. & Hay, A. J.(1996). The NB protein is an integral component of the membrane of influenza B virus. J Gen Virol 77, 2689–2694.[CrossRef] [Google Scholar]
  9. Brassard, D. L., Leser, G. P. & Lamb, R. A.(1996). Influenza B virus NB glycoprotein is a component of the virion. Virology 220, 350–360.[CrossRef] [Google Scholar]
  10. Briedis, D. J. & Lamb, R. A.(1982). Influenza B virus genome: sequences and structural organization of RNA segment 8 and the mRNAs coding for the NS1 and NS2 proteins. J Virol 42, 186–193. [Google Scholar]
  11. Briedis, D. J., Lamb, R. A. & Choppin, P. W.(1982). Sequence of RNA segment 7 of the influenza B virus genome: partial amino acid homology between the membrane proteins (M1) of influenza A and B viruses and conservation of a second open reading frame. Virology 116, 581–588.[CrossRef] [Google Scholar]
  12. Cady, S. D., Schmidt-Rohr, K., Wang, J., Soto, C. S., Degrado, W. F. & Hong, M.(2010). Structure of the amantadine binding site of influenza M2 proton channels in lipid bilayers. Nature 463, 689–692.[CrossRef] [Google Scholar]
  13. Camilloni, B., Neri, M., Lepri, E. & Iorio, A. M.(2009). Cross-reactive antibodies in middle-aged and elderly volunteers after MF59-adjuvanted subunit trivalent influenza vaccine against B viruses of the B/Victoria or B/Yamagata lineages. Vaccine 27, 4099–4103.[CrossRef] [Google Scholar]
  14. Carrat, F. & Flahault, A.(2007). Influenza vaccine: the challenge of antigenic drift. Vaccine 25, 6852–6862.[CrossRef] [Google Scholar]
  15. Chen, Z. & Krug, R. M.(2000). Selective nuclear export of viral mRNAs in influenza-virus-infected cells. Trends Microbiol 8, 376–383.[CrossRef] [Google Scholar]
  16. Chen, Z., Li, Y. & Krug, R. M.(1999). Influenza A virus NS1 protein targets poly(A)-binding protein II of the cellular 3′-end processing machinery. EMBO J 18, 2273–2283.[CrossRef] [Google Scholar]
  17. Chen, W., Calvo, P. A., Malide, D., Gibbs, J., Schubert, U., Bacik, I., Basta, S., O'Neill, R., Schickli, J. & other authors(2001). A novel influenza A virus mitochondrial protein that induces cell death. Nat Med 7, 1306–1312.[CrossRef] [Google Scholar]
  18. Chen, Z., Aspelund, A., Kemble, G. & Jin, H.(2006). Genetic mapping of the cold-adapted phenotype of B/Ann Arbor/1/66, the master donor virus for live attenuated influenza vaccines (FluMist). Virology 345, 416–423.[CrossRef] [Google Scholar]
  19. Chen, Z., Aspelund, A. & Jin, H.(2008a). Stabilizing the glycosylation pattern of influenza B hemagglutinin following adaptation to growth in eggs. Vaccine 26, 361–371.[CrossRef] [Google Scholar]
  20. Chen, Z., Aspelund, A., Kemble, G. & Jin, H.(2008b). Molecular studies of temperature-sensitive replication of the cold-adapted B/Ann Arbor/1/66, the master donor virus for live attenuated influenza FluMist vaccines. Virology 380, 354–362.[CrossRef] [Google Scholar]
  21. Cox, N. J., Kitame, F., Kendal, A. P., Maassab, H. F. & Naeve, C.(1988). Identification of sequence changes in the cold-adapted, live attenuated influenza vaccine strain, A/Ann Arbor/6/60 (H2N2). Virology 167, 554–567. [Google Scholar]
  22. Crescenzo-Chaigne, B., Naffakh, N. & van der Werf, S.(1999). Comparative analysis of the ability of the polymerase complexes of influenza viruses type A, B and C to assemble into functional RNPs that allow expression and replication of heterotypic model RNA templates in vivo. Virology 265, 342–353.[CrossRef] [Google Scholar]
  23. Dauber, B., Heins, G. & Wolff, T.(2004). The influenza B virus nonstructural NS1 protein is essential for efficient viral growth and antagonizes beta interferon induction. J Virol 78, 1865–1872.[CrossRef] [Google Scholar]
  24. Dauber, B., Schneider, J. & Wolff, T.(2006). Double-stranded RNA binding of influenza B virus nonstructural NS1 protein inhibits protein kinase R but is not essential to antagonize production of alpha/beta interferon. J Virol 80, 11667–11677.[CrossRef] [Google Scholar]
  25. Dauber, B., Martinez-Sobrido, L., Schneider, J., Hai, R., Waibler, Z., Kalinke, U., Garcia-Sastre, A. & Wolff, T.(2009). Influenza B virus ribonucleoprotein is a potent activator of the antiviral kinase PKR. PLoS Pathog 5, e1000473.[CrossRef] [Google Scholar]
  26. Davies, W. L., Grunert, R. R., Haff, R. F., McGahen, J. W., Neumayer, E. M., Paulshock, M., Watts, J. C., Wood, T. R., Hermann, E. C. & other authors(1964). Antiviral activity of 1-Adamantanamine (amantadine). Science 144, 862–863.[CrossRef] [Google Scholar]
  27. DeBorde, D. C., Donabedian, A. M., Herlocher, M. L., Naeve, C. W. & Maassab, H. F.(1988). Sequence comparison of wild-type and cold-adapted B/Ann Arbor/1/66 influenza virus genes. Virology 163, 429–443.[CrossRef] [Google Scholar]
  28. Desselberger, U. & Palese, P.(1978). Molecular weights of RNA segments of influenza A and B viruses. Virology 88, 394–399.[CrossRef] [Google Scholar]
  29. Desselberger, U., Racaniello, V. R., Zazra, J. J. & Palese, P.(1980). The 3′ and 5′-terminal sequences of influenza A, B and C virus RNA segments are highly conserved and show partial inverted complementarity. Gene 8, 315–328.[CrossRef] [Google Scholar]
  30. Donelan, N. R., Dauber, B., Wang, X., Basler, C. F., Wolff, T. & Garcia-Sastre, A.(2004). The N- and C-terminal domains of the NS1 protein of influenza B virus can independently inhibit IRF-3 and beta interferon promoter activation. J Virol 78, 11574–11582.[CrossRef] [Google Scholar]
  31. Ehrhardt, C., Wolff, T. & Ludwig, S.(2007a). Activation of phosphatidylinositol 3-kinase signaling by the nonstructural NS1 protein is not conserved among type A and B influenza viruses. J Virol 81, 12097–12100.[CrossRef] [Google Scholar]
  32. Ehrhardt, C., Wolff, T., Pleschka, S., Planz, O., Beermann, W., Bode, J. G., Schmolke, M. & Ludwig, S.(2007b). Influenza A virus NS1 protein activates the PI3K/Akt pathway to mediate antiapoptotic signaling responses. J Virol 81, 3058–3067.[CrossRef] [Google Scholar]
  33. Fischer, W. B., Pitkeathly, M. & Sansom, M. S.(2001). Amantadine blocks channel activity of the transmembrane segment of the NB protein from influenza B. Eur Biophys J 30, 416–420.[CrossRef] [Google Scholar]
  34. Flandorfer, A., Garcia-Sastre, A., Basler, C. F. & Palese, P.(2003). Chimeric influenza A viruses with a functional influenza B virus neuraminidase or hemagglutinin. J Virol 77, 9116–9123.[CrossRef] [Google Scholar]
  35. Garcia-Sastre, A., Egorov, A., Matassov, D., Brandt, S., Levy, D. E., Durbin, J. E., Palese, P. & Muster, T.(1998). Influenza A virus lacking the NS1 gene replicates in interferon-deficient systems. Virology 252, 324–330.[CrossRef] [Google Scholar]
  36. Garten, R. J., Davis, C. T., Russell, C. A., Shu, B., Lindstrom, S., Balish, A., Sessions, W. M., Xu, X., Skepner, E. & other authors(2009). Antigenic and genetic characteristics of swine-origin 2009 A(H1N1) influenza viruses circulating in humans. Science 325, 197–201.[CrossRef] [Google Scholar]
  37. Ghenkina, D. B. & Ghendon, Y. Z.(1979). Recombination and complementation between orthomyxoviruses under conditions of abortive infection. Acta Virol 23, 97–106. [Google Scholar]
  38. Gog, J. R., Afonso Edos, S., Dalton, R. M., Leclercq, I., Tiley, L., Elton, D., von Kirchbach, J. C., Naffakh, N., Escriou, N. & other authors(2007). Codon conservation in the influenza A virus genome defines RNA packaging signals. Nucleic Acids Res 35, 1897–1907.[CrossRef] [Google Scholar]
  39. Goodeve, A. C., Jennings, R. & Potter, C. W.(1985). Reassortants of influenza B viruses for use in vaccines: an evaluation. Arch Virol 83, 169–179.[CrossRef] [Google Scholar]
  40. Gotlieb, T. & Hirst, G. K.(1954). The experimental production of combination forms of virus. III. The formation of doubly antigenic particles from influenza A and B virus and a study of the ability of individual particles of X virus to yield two separate strains. J Exp Med 99, 307–320.[CrossRef] [Google Scholar]
  41. Gubareva, L. V., Kaiser, L., Matrosovich, M. N., Soo-Hoo, Y. & Hayden, F. G.(2001a). Selection of influenza virus mutants in experimentally infected volunteers treated with oseltamivir. J Infect Dis 183, 523–531.[CrossRef] [Google Scholar]
  42. Gubareva, L. V., Webster, R. G. & Hayden, F. G.(2001b). Comparison of the activities of zanamivir, oseltamivir, and RWJ-270201 against clinical isolates of influenza virus and neuraminidase inhibitor-resistant variants. Antimicrob Agents Chemother 45, 3403–3408.[CrossRef] [Google Scholar]
  43. Hai, R., Martinez-Sobrido, L., Fraser, K. A., Ayllon, J., Garcia-Sastre, A. & Palese, P.(2008). Influenza B virus NS1-truncated mutants: live-attenuated vaccine approach. J Virol 82, 10580–10590.[CrossRef] [Google Scholar]
  44. Hale, B. G., Jackson, D., Chen, Y. H., Lamb, R. A. & Randall, R. E.(2006). Influenza A virus NS1 protein binds p85β and activates phosphatidylinositol-3-kinase signaling. Proc Natl Acad Sci U S A 103, 14194–14199.[CrossRef] [Google Scholar]
  45. Hale, B. G., Randall, R. E., Ortin, J. & Jackson, D.(2008). The multifunctional NS1 protein of influenza A viruses. J Gen Virol 89, 2359–2376.[CrossRef] [Google Scholar]
  46. Hatakeyama, S., Sugaya, N., Ito, M., Yamazaki, M., Ichikawa, M., Kimura, K., Kiso, M., Shimizu, H., Kawakami, C. & other authors(2007). Emergence of influenza B viruses with reduced sensitivity to neuraminidase inhibitors. JAMA 297, 1435–1442. [Google Scholar]
  47. Hatta, M. & Kawaoka, Y.(2003). The NB protein of influenza B virus is not necessary for virus replication in vitro. J Virol 77, 6050–6054.[CrossRef] [Google Scholar]
  48. Hatta, M., Goto, H. & Kawaoka, Y.(2004). Influenza B virus requires BM2 protein for replication. J Virol 78, 5576–5583.[CrossRef] [Google Scholar]
  49. Hatta, M., Kohlmeier, C. K., Hatta, Y., Ozawa, M. & Kawaoka, Y.(2009). Region required for protein expression from the stop-start pentanucleotide in the M gene of influenza B virus. J Virol 83, 5939–5942.[CrossRef] [Google Scholar]
  50. Hay, A. J.(1992). The action of adamantanamines against influenza A viruses: inhibition of the M2 ion channel protein. Semin Virol 3, 21–30. [Google Scholar]
  51. Hayden, F. G., Treanor, J. J., Fritz, R. S., Lobo, M., Betts, R. F., Miller, M., Kinnersley, N., Mills, R. G., Ward, P. & other authors(1999). Use of the oral neuraminidase inhibitor oseltamivir in experimental human influenza: randomized controlled trials for prevention and treatment. JAMA 282, 1240–1246.[CrossRef] [Google Scholar]
  52. Hayden, F. G., Gubareva, L. V., Monto, A. S., Klein, T. C., Elliot, M. J., Hammond, J. M., Sharp, S. J. & Ossi, M. J.(2000). Inhaled zanamivir for the prevention of influenza in families. Zanamivir Family Study Group. N Engl J Med 343, 1282–1289.[CrossRef] [Google Scholar]
  53. Hiebert, S. W., Williams, M. A. & Lamb, R. A.(1986). Nucleotide sequence of RNA segment 7 of influenza B/Singapore/222/79: maintenance of a second large open reading frame. Virology 155, 747–751.[CrossRef] [Google Scholar]
  54. Hoffmann, E., Mahmood, K., Yang, C. F., Webster, R. G., Greenberg, H. B. & Kemble, G.(2002). Rescue of influenza B virus from eight plasmids. Proc Natl Acad Sci U S A 99, 11411–11416.[CrossRef] [Google Scholar]
  55. Hoffmann, E., Mahmood, K., Chen, Z., Yang, C. F., Spaete, J., Greenberg, H. B., Herlocher, M. L., Jin, H. & Kemble, G.(2005). Multiple gene segments control the temperature sensitivity and attenuation phenotypes of ca B/Ann Arbor/1/66. J Virol 79, 11014–11021.[CrossRef] [Google Scholar]
  56. Horimoto, T., Takada, A., Iwatsuki-Horimoto, K., Hatta, M., Goto, H. & Kawaoka, Y.(2003). Generation of influenza A viruses with chimeric (type A/B) hemagglutinins. J Virol 77, 8031–8038.[CrossRef] [Google Scholar]
  57. Horimoto, T., Iwatsuki-Horimoto, K., Hatta, M. & Kawaoka, Y.(2004a). Influenza A viruses possessing type B hemagglutinin and neuraminidase: potential as vaccine components. Microbes Infect 6, 579–583.[CrossRef] [Google Scholar]
  58. Horimoto, T., Takada, A., Iwatsuki-Horimoto, K. & Kawaoka, Y.(2004b). A protective immune response in mice to viral components other than hemagglutinin in a live influenza A virus vaccine model. Vaccine 22, 2244–2247.[CrossRef] [Google Scholar]
  59. Horvath, C. M., Williams, M. A. & Lamb, R. A.(1990). Eukaryotic coupled translation of tandem cistrons: identification of the influenza B virus BM2 polypeptide. EMBO J 9, 2639–2647. [Google Scholar]
  60. Hsu, M. T., Parvin, J. D., Gupta, S., Krystal, M. & Palese, P.(1987). Genomic RNAs of influenza viruses are held in a circular conformation in virions and in infected cells by a terminal panhandle. Proc Natl Acad Sci U S A 84, 8140–8144.[CrossRef] [Google Scholar]
  61. Huber, V. C., Kleimeyer, L. H. & McCullers, J. A.(2008). Live, attenuated influenza virus (LAIV) vehicles are strong inducers of immunity toward influenza B virus. Vaccine 26, 5381–5388.[CrossRef] [Google Scholar]
  62. Hutchinson, E. C., von Kirchbach, J. C., Gog, J. R. & Digard, P.(2010). Genome packaging in influenza A virus. J Gen Virol 91, 313–328.[CrossRef] [Google Scholar]
  63. Imai, M., Watanabe, S., Ninomiya, A., Obuchi, M. & Odagiri, T.(2004). Influenza B virus BM2 protein is a crucial component for incorporation of viral ribonucleoprotein complex into virions during virus assembly. J Virol 78, 11007–11015.[CrossRef] [Google Scholar]
  64. Imai, M., Kawasaki, K. & Odagiri, T.(2008). Cytoplasmic domain of influenza B virus BM2 protein plays critical roles in production of infectious virus. J Virol 82, 728–739.[CrossRef] [Google Scholar]
  65. Isaacs, A. & Baron, S.(1960). Antiviral action of interferon in embryonic cells. Lancet 2, 946–947. [Google Scholar]
  66. Iwatsuki-Horimoto, K., Horimoto, T., Noda, T., Kiso, M., Maeda, J., Watanabe, S., Muramoto, Y., Fujii, K. & Kawaoka, Y.(2006). The cytoplasmic tail of the influenza A virus M2 protein plays a role in viral assembly. J Virol 80, 5233–5240.[CrossRef] [Google Scholar]
  67. Iwatsuki-Horimoto, K., Hatta, Y., Hatta, M., Muramoto, Y., Chen, H., Kawaoka, Y. & Horimoto, T.(2008). Limited compatibility between the RNA polymerase components of influenza virus type A and B. Virus Res 135, 161–165.[CrossRef] [Google Scholar]
  68. Jackson, D., Cadman, A., Zurcher, T. & Barclay, W. S.(2002). A reverse genetics approach for recovery of recombinant influenza B viruses entirely from cDNA. J Virol 76, 11744–11747.[CrossRef] [Google Scholar]
  69. Jackson, D., Zurcher, T. & Barclay, W.(2004). Reduced incorporation of the influenza B virus BM2 protein in virus particles decreases infectivity. Virology 322, 276–285.[CrossRef] [Google Scholar]
  70. Jackson, D., Barclay, W. & Zurcher, T.(2005). Characterization of recombinant influenza B viruses with key neuraminidase inhibitor resistance mutations. J Antimicrob Chemother 55, 162–169.[CrossRef] [Google Scholar]
  71. Jackson, D., Killip, M. J., Galloway, C. S., Russell, R. J. & Randall, R. E.(2010). Loss of function of the influenza A virus NS1 protein promotes apoptosis but this is not due to a failure to activate phosphatidylinositol 3-kinase (PI3K). Virology 396, 94–105.[CrossRef] [Google Scholar]
  72. Kawai, N., Ikematsu, H., Iwaki, N., Maeda, T., Satoh, I., Hirotsu, N. & Kashiwagi, S.(2006). A comparison of the effectiveness of oseltamivir for the treatment of influenza A and influenza B: a Japanese multicenter study of the 2003–2004 and 2004–2005 influenza seasons. Clin Infect Dis 43, 439–444.[CrossRef] [Google Scholar]
  73. Kilbourne, E. D.(1969). Future influenza vaccines and the use of genetic recombinants. Bull World Health Organ 41, 643–645. [Google Scholar]
  74. Kim, C. U., Lew, W., Williams, M. A., Liu, H., Zhang, L., Swaminathan, S., Bischofberger, N., Chen, M. S., Mendel, D. B. & other authors(1997). Influenza neuraminidase inhibitors possessing a novel hydrophobic interaction in the enzyme active site: design, synthesis, and structural analysis of carbocyclic sialic acid analogues with potent anti-influenza activity. J Am Chem Soc 119, 681–690.[CrossRef] [Google Scholar]
  75. Koudstaal, W., Hartgroves, L., Havenga, M., Legastelois, I., Ophorst, C., Sieuwerts, M., Zuijdgeest, D., Vogels, R., Custers, J. & other authors(2009). Suitability of PER.C6 cells to generate epidemic and pandemic influenza vaccine strains by reverse genetics. Vaccine 27, 2588–2593.[CrossRef] [Google Scholar]
  76. Lackenby, A., Thompson, C. I. & Democratis, J.(2008). The potential impact of neuraminidase inhibitor resistant influenza. Curr Opin Infect Dis 21, 626–638.[CrossRef] [Google Scholar]
  77. Lamb, R. A. & Krug, R. M.(2001).Orthomyxoviridae: The Viruses and Their Replication. In Fields Virology, 4th edn, pp. 1487–1531. Edited by Knipe, D. M. & Howley, P. M.. Philadelphia. : Lippincott Williams & Wilkins. [Google Scholar]
  78. Lee, Y. S. & Seong, B. L.(1996). Mutational analysis of influenza B virus RNA transcription in vitro. J Virol 70, 1232–1236. [Google Scholar]
  79. Lee, Y. S. & Seong, B. L.(1998). Nucleotides in the panhandle structure of the influenza B virus virion RNA are involved in the specificity between influenza A and B viruses. J Gen Virol 79, 673–681. [Google Scholar]
  80. Lenschow, D. J., Lai, C., Frias-Staheli, N., Giannakopoulos, N. V., Lutz, A., Wolff, T., Osiak, A., Levine, B., Schmidt, R. E. & other authors(2007). IFN-stimulated gene 15 functions as a critical antiviral molecule against influenza, herpes, and Sindbis viruses. Proc Natl Acad Sci U S A 104, 1371–1376.[CrossRef] [Google Scholar]
  81. Lin, Y. P., Gregory, V., Bennett, M. & Hay, A.(2004). Recent changes among human influenza viruses. Virus Res 103, 47–52.[CrossRef] [Google Scholar]
  82. Lugovtsev, V. Y., Vodeiko, G. M., Strupczewski, C. M., Ye, Z. & Levandowski, R. A.(2007). Generation of the influenza B viruses with improved growth phenotype by substitution of specific amino acids of hemagglutinin. Virology 365, 315–323.[CrossRef] [Google Scholar]
  83. Lugovtsev, V. Y., Smith, D. F. & Weir, J. P.(2009). Changes of the receptor-binding properties of influenza B virus B/Victoria/504/2000 during adaptation in chicken eggs. Virology 394, 218–226.[CrossRef] [Google Scholar]
  84. Luo, C., Nobusawa, E. & Nakajima, K.(1999). An analysis of the role of neuraminidase in the receptor-binding activity of influenza B virus: the inhibitory effect of Zanamivir on haemadsorption. J Gen Virol 80, 2969–2976. [Google Scholar]
  85. Luytjes, W., Krystal, M., Enami, M., Parvin, J. D. & Palese, P.(1989). Amplification, expression, and packaging of foreign gene by influenza virus. Cell 59, 1107–1113.[CrossRef] [Google Scholar]
  86. Ma, C., Soto, C. S., Ohigashi, Y., Taylor, A., Bournas, V., Glawe, B., Udo, M. K., Degrado, W. F., Lamb, R. A. & other authors(2008). Identification of the pore-lining residues of the BM2 ion channel protein of influenza B virus. J Biol Chem 283, 15921–15931.[CrossRef] [Google Scholar]
  87. Maassab, H. F.(1967). Adaptation and growth characteristics of influenza virus at 25 degrees c. Nature 213, 612–614.[CrossRef] [Google Scholar]
  88. Maassab, H. F. & DeBorde, D. C.(1985). Development and characterization of cold-adapted viruses for use as live virus vaccines. Vaccine 3, 355–369.[CrossRef] [Google Scholar]
  89. Mazur, I., Anhlan, D., Mitzner, D., Wixler, L., Schubert, U. & Ludwig, S.(2008). The proapoptotic influenza A virus protein PB1–F2 regulates viral polymerase activity by interaction with the PB1 protein. Cell Microbiol 10, 1140–1152.[CrossRef] [Google Scholar]
  90. McAuley, J. L., Hornung, F., Boyd, K. L., Smith, A. M., McKeon, R., Bennink, J., Yewdell, J. W. & McCullers, J. A.(2007). Expression of the 1918 influenza A virus PB1–F2 enhances the pathogenesis of viral and secondary bacterial pneumonia. Cell Host Microbe 2, 240–249.[CrossRef] [Google Scholar]
  91. McCown, M. F. & Pekosz, A.(2005). The influenza A virus M2 cytoplasmic tail is required for infectious virus production and efficient genome packaging. J Virol 79, 3595–3605.[CrossRef] [Google Scholar]
  92. McCown, M. F. & Pekosz, A.(2006). Distinct domains of the influenza a virus M2 protein cytoplasmic tail mediate binding to the M1 protein and facilitate infectious virus production. J Virol 80, 8178–8189.[CrossRef] [Google Scholar]
  93. McCullers, J. A., Wang, G. C., He, S. & Webster, R. G.(1999). Reassortment and insertion-deletion are strategies for the evolution of influenza B viruses in nature. J Virol 73, 7343–7348. [Google Scholar]
  94. McCullers, J. A., Saito, T. & Iverson, A. R.(2004). Multiple genotypes of influenza B virus circulated between 1979 and 2003. J Virol 78, 12817–12828.[CrossRef] [Google Scholar]
  95. McCullers, J. A., Hoffmann, E., Huber, V. C. & Nickerson, A. D.(2005). A single amino acid change in the C-terminal domain of the matrix protein M1 of influenza B virus confers mouse adaptation and virulence. Virology 336, 318–326.[CrossRef] [Google Scholar]
  96. McGeoch, D., Fellner, P. & Newton, C.(1976). Influenza virus genome consists of eight distinct RNA species. Proc Natl Acad Sci U S A 73, 3045–3049.[CrossRef] [Google Scholar]
  97. McKimm-Breschkin, J. L.(2000). Resistance of influenza viruses to neuraminidase inhibitors – a review. Antiviral Res 47, 1–17.[CrossRef] [Google Scholar]
  98. Meindl, P. & Tuppy, H.(1969). 2-Deoxy-2,3-dehydrosialic acids. II. Competitive inhibition of Vibrio cholerae neuraminidase by 2-deoxy-2,3-dehydro-N-acylneuraminic acids. Hoppe Seylers Z Physiol Chem 350, 1088–1092.[CrossRef] [Google Scholar]
  99. Monto, A. S., Pichichero, M. E., Blanckenberg, S. J., Ruuskanen, O., Cooper, C., Fleming, D. M. & Kerr, C.(2002). Zanamivir prophylaxis: an effective strategy for the prevention of influenza types A and B within households. J Infect Dis 186, 1582–1588.[CrossRef] [Google Scholar]
  100. Mould, J. A., Paterson, R. G., Takeda, M., Ohigashi, Y., Venkataraman, P., Lamb, R. A. & Pinto, L. H.(2003). Influenza B virus BM2 protein has ion channel activity that conducts protons across membranes. Dev Cell 5, 175–184.[CrossRef] [Google Scholar]
  101. Nemeroff, M. E., Barabino, S. M., Li, Y., Keller, W. & Krug, R. M.(1998). Influenza virus NS1 protein interacts with the cellular 30 kDa subunit of CPSF and inhibits 3′ end formation of cellular pre-mRNAs. Mol Cell 1, 991–1000.[CrossRef] [Google Scholar]
  102. Neumann, G. & Kawaoka, Y.(2001). Reverse genetics of influenza virus. Virology 287, 243–250.[CrossRef] [Google Scholar]
  103. Odagiri, T., Hong, J. & Ohara, Y.(1999). The BM2 protein of influenza B virus is synthesized in the late phase of infection and incorporated into virions as a subviral component. J Gen Virol 80, 2573–2581. [Google Scholar]
  104. Ohigashi, Y., Ma, C., Jing, X., Balannick, V., Pinto, L. H. & Lamb, R. A.(2009). An amantadine-sensitive chimeric BM2 ion channel of influenza B virus has implications for the mechanism of drug inhibition. Proc Natl Acad Sci U S A 106, 18775–18779.[CrossRef] [Google Scholar]
  105. Osterhaus, A. D., Rimmelzwaan, G. F., Martina, B. E., Bestebroer, T. M. & Fouchier, R. A.(2000). Influenza B virus in seals. Science 288, 1051–1053.[CrossRef] [Google Scholar]
  106. Palese, P. & Shaw, M. L.(2007).Orthomyxoviridae: The viruses and their replication. In Fields Virology, 5th edn, pp. 1647–1689. Edited by Knipe, D. M. & Howley, P. M.. Philadelphia. : Lippincott Williams & Wilkins. [Google Scholar]
  107. Paterson, R. G., Takeda, M., Ohigashi, Y., Pinto, L. H. & Lamb, R. A.(2003). Influenza B virus BM2 protein is an oligomeric integral membrane protein expressed at the cell surface. Virology 306, 7–17.[CrossRef] [Google Scholar]
  108. Pau, M. G., Ophorst, C., Koldijk, M. H., Schouten, G., Mehtali, M. & Uytdehaag, F.(2001). The human cell line PER.C6 provides a new manufacturing system for the production of influenza vaccines. Vaccine 19, 2716–2721.[CrossRef] [Google Scholar]
  109. Powell, M. L., Napthine, S., Jackson, R. J., Brierley, I. & Brown, T. D.(2008). Characterization of the termination-reinitiation strategy employed in the expression of influenza B virus BM2 protein. RNA 14, 2394–2406.[CrossRef] [Google Scholar]
  110. Qiu, Y. & Krug, R. M.(1994). The influenza virus NS1 protein is a poly(A)-binding protein that inhibits nuclear export of mRNAs containing poly(A). J Virol 68, 2425–2432. [Google Scholar]
  111. Robertson, J. S.(1979). 5′ and 3′ terminal nucleotide sequences of the RNA genome segments of influenza virus. Nucleic Acids Res 6, 3745–3757.[CrossRef] [Google Scholar]
  112. Robertson, J. S., Naeve, C. W., Webster, R. G., Bootman, J. S., Newman, R. & Schild, G. C.(1985). Alterations in the hemagglutinin associated with adaptation of influenza B virus to growth in eggs. Virology 143, 166–174.[CrossRef] [Google Scholar]
  113. Rota, P. A., Wallis, T. R., Harmon, M. W., Rota, J. S., Kendal, A. P. & Nerome, K.(1990). Cocirculation of two distinct evolutionary lineages of influenza type B virus since 1983. Virology 175, 59–68.[CrossRef] [Google Scholar]
  114. Sato, Y., Yoshioka, K., Suzuki, C., Awashima, S., Hosaka, Y., Yewdell, J. & Kuroda, K.(2003). Localization of influenza virus proteins to nuclear dot 10 structures in influenza virus-infected cells. Virology 310, 29–40.[CrossRef] [Google Scholar]
  115. Schneider, J., Dauber, B., Melen, K., Julkunen, I. & Wolff, T.(2009). Analysis of influenza B virus NS1 protein trafficking reveals a novel interaction with nuclear speckle domains. J Virol 83, 701–711.[CrossRef] [Google Scholar]
  116. Schnell, J. R. & Chou, J. J.(2008). Structure and mechanism of the M2 proton channel of influenza A virus. Nature 451, 591–595.[CrossRef] [Google Scholar]
  117. Shaw, M. W., Choppin, P. W. & Lamb, R. A.(1983). A previously unrecognized influenza B virus glycoprotein from a bicistronic mRNA that also encodes the viral neuraminidase. Proc Natl Acad Sci U S A 80, 4879–4883.[CrossRef] [Google Scholar]
  118. Sheu, T. G., Deyde, V. M., Okomo-Adhiambo, M., Garten, R. J., Xu, X., Bright, R. A., Butler, E. N., Wallis, T. R., Klimov, A. I. & other authors(2008). Surveillance for neuraminidase inhibitor resistance among human influenza A and B viruses circulating worldwide from 2004 to 2008. Antimicrob Agents Chemother 52, 3284–3292.[CrossRef] [Google Scholar]
  119. Skehel, J. J. & Hay, A. J.(1978). Nucleotide sequences at the 5′ termini of influenza virus RNAs and their transcripts. Nucleic Acids Res 5, 1207–1219.[CrossRef] [Google Scholar]
  120. Smee, D. F., Sidwell, R. W., Morrison, A. C., Bailey, K. W., Baum, E. Z., Ly, L. & Wagaman, P. C.(2001). Characterization of an influenza A (H3N2) virus resistant to the cyclopentane neuraminidase inhibitor RWJ-270201. Antiviral Res 52, 251–259.[CrossRef] [Google Scholar]
  121. Snyder, M. H., Betts, R. F., DeBorde, D., Tierney, E. L., Clements, M. L., Herrington, D., Sears, S. D., Dolin, R., Maassab, H. F. & other authors(1988). Four viral genes independently contribute to attenuation of live influenza A/Ann Arbor/6/60 (H2N2) cold-adapted reassortant virus vaccines. J Virol 62, 488–495. [Google Scholar]
  122. Snyder, M. H., London, W. T., Maassab, H. F. & Murphy, B. R.(1989). Attenuation and phenotypic stability of influenza B/Texas/1/84 cold-adapted reassortant virus: studies in hamsters and chimpanzees. J Infect Dis 160, 604–610.[CrossRef] [Google Scholar]
  123. Sridharan, H., Zhao, C. & Krug, R. M.(2010). Species specificity of the NS1 protein of influenza B virus: NS1 binds only human and non-human primate ubiquitin-like ISG15 proteins. J Biol Chem 285, 7852–7856.[CrossRef] [Google Scholar]
  124. Stevens, M. P. & Barclay, W. S.(1998). The N-terminal extension of the influenza B virus nucleoprotein is not required for nuclear accumulation or the expression and replication of a model RNA. J Virol 72, 5307–5312. [Google Scholar]
  125. Stoeckle, M. Y., Shaw, M. W. & Choppin, P. W.(1987). Segment-specific and common nucleotide sequences in the noncoding regions of influenza B virus genome RNAs. Proc Natl Acad Sci U S A 84, 2703–2707.[CrossRef] [Google Scholar]
  126. Stouffer, A. L., Acharya, R., Salom, D., Levine, A. S., Di Costanzo, L., Soto, C. S., Tereshko, V., Nanda, V., Stayrook, S. & other authors(2008). Structural basis for the function and inhibition of an influenza virus proton channel. Nature 451, 596–599.[CrossRef] [Google Scholar]
  127. Sugaya, N., Mitamura, K., Yamazaki, M., Tamura, D., Ichikawa, M., Kimura, K., Kawakami, C., Kiso, M., Ito, M. & other authors(2007). Lower clinical effectiveness of oseltamivir against influenza B contrasted with influenza A infection in children. Clin Infect Dis 44, 197–202.[CrossRef] [Google Scholar]
  128. Sunstrom, N. A., Premkumar, L. S., Premkumar, A., Ewart, G., Cox, G. B. & Gage, P. W.(1996). Ion channels formed by NB, an influenza B virus protein. J Membr Biol 150, 127–132.[CrossRef] [Google Scholar]
  129. Sweet, T. M., Maassab, H. F. & Herlocher, M. L.(2004). Reverse genetics studies of attenuation of the ca A/AA/6/60 influenza virus: the role of the matrix gene. Biomed Pharmacother 58, 509–515.[CrossRef] [Google Scholar]
  130. Varghese, J. N., Laver, W. G. & Colman, P. M.(1983). Structure of the influenza virus glycoprotein antigen neuraminidase at 2.9 A resolution. Nature 303, 35–40.[CrossRef] [Google Scholar]
  131. Versteeg, G. A., Hale, B. G., van Boheemen, S., Wolff, T., Lenschow, D. J. & Garcia-Sastre, A.(2010). Species-specific antagonism of host ISGylation by the influenza B virus NS1 protein. J Virol 84, 5423–5430.[CrossRef] [Google Scholar]
  132. von Itzstein, M., Wu, W. Y., Kok, G. B., Pegg, M. S., Dyason, J. C., Jin, B., Van Phan, T., Smythe, M. L., White, H. F. & other authors(1993). Rational design of potent sialidase-based inhibitors of influenza virus replication. Nature 363, 418–423.[CrossRef] [Google Scholar]
  133. Wang, Z. & Duke, G. M.(2007). Cloning of the canine RNA polymerase I promoter and establishment of reverse genetics for influenza A and B in MDCK cells. Virol J 4, 102.[CrossRef] [Google Scholar]
  134. Wang, W. & Krug, R. M.(1996). The RNA-binding and effector domains of the viral NS1 protein are conserved to different extents among influenza A and B viruses. Virology 223, 41–50.[CrossRef] [Google Scholar]
  135. Watanabe, S., Imai, M., Ohara, Y. & Odagiri, T.(2003). Influenza B virus BM2 protein is transported through the trans-Golgi network as an integral membrane protein. J Virol 77, 10630–10637.[CrossRef] [Google Scholar]
  136. Williams, M. A. & Lamb, R. A.(1986). Determination of the orientation of an integral membrane protein and sites of glycosylation by oligonucleotide-directed mutagenesis: influenza B virus NB glycoprotein lacks a cleavable signal sequence and has an extracellular NH2-terminal region. Mol Cell Biol 6, 4317–4328. [Google Scholar]
  137. Williams, M. A. & Lamb, R. A.(1988). Polylactosaminoglycan modification of a small integral membrane glycoprotein, influenza B virus NB. Mol Cell Biol 8, 1186–1196. [Google Scholar]
  138. Williams, M. A. & Lamb, R. A.(1989). Effect of mutations and deletions in a bicistronic mRNA on the synthesis of influenza B virus NB and NA glycoproteins. J Virol 63, 28–35. [Google Scholar]
  139. Wise, H. M., Foeglein, A., Sun, J., Dalton, R. M., Patel, S., Howard, W., Anderson, E. C., Barclay, W. S. & Digard, P.(2009). A complicated message: identification of a novel PB1-related protein translated from influenza A virus segment 2 mRNA. J Virol 83, 8021–8031.[CrossRef] [Google Scholar]
  140. Wressnigg, N., Shurygina, A. P., Wolff, T., Redlberger-Fritz, M., Popow-Kraupp, T., Muster, T., Egorov, A. & Kittel, C.(2009a). Influenza B mutant viruses with truncated NS1 proteins grow efficiently in Vero cells and are immunogenic in mice. J Gen Virol 90, 366–374.[CrossRef] [Google Scholar]
  141. Wressnigg, N., Voss, D., Wolff, T., Romanova, J., Ruthsatz, T., Mayerhofer, I., Reiter, M., Nakowitsch, S., Humer, J. & other authors(2009b). Development of a live-attenuated influenza B ΔNS1 intranasal vaccine candidate. Vaccine 27, 2851–2857.[CrossRef] [Google Scholar]
  142. Yuan, W. & Krug, R. M.(2001). Influenza B virus NS1 protein inhibits conjugation of the interferon (IFN)-induced ubiquitin-like ISG15 protein. EMBO J 20, 362–371.[CrossRef] [Google Scholar]
  143. Yuan, W., Aramini, J. M., Montelione, G. T. & Krug, R. M.(2002). Structural basis for ubiquitin-like ISG 15 protein binding to the NS1 protein of influenza B virus: a protein-protein interaction function that is not shared by the corresponding N-terminal domain of the NS1 protein of influenza A virus. Virology 304, 291–301.[CrossRef] [Google Scholar]
  144. Zambon, M. & Hayden, F. G.(2001). Position statement: global neuraminidase inhibitor susceptibility network. Antiviral Res 49, 147–156.[CrossRef] [Google Scholar]
  145. Zebedee, S. L. & Lamb, R. A.(1988). Influenza A virus M2 protein: monoclonal antibody restriction of virus growth and detection of M2 in virions. J Virol 62, 2762–2772. [Google Scholar]
  146. Zhirnov, O. P.(1992). Isolation of matrix protein M1 from influenza viruses by acid-dependent extraction with nonionic detergent. Virology 186, 324–330.[CrossRef] [Google Scholar]

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error