1887

Abstract

The Oman strain of (TYLCV-OM) and its associated betasatellite, an isolate of Tomato leaf curl betasatellite (ToLCB), were previously reported from Oman. Here we report the isolation of a second, previously undescribed, begomovirus [Tomato leaf curl Oman virus (ToLCOMV)] and an alphasatellite from that same plant sample. This alphasatellite is closely related (90 % shared nucleotide identity) to an unusual DNA-2-type yellow vein Singapore alphasatellite (AYVSGA), thus far identified only in Singapore. ToLCOMV was found to have a recombinant genome comprising sequences derived from two extant parents, TYLCV-OM, which is indigenous to Oman, and from the Indian subcontinent. All possible combinations of ToLCOMV, TYLCV-OM, ToLCB and AYVSGA were used to agro-inoculate tomato and . Infection with ToLCOMV yielded mild leaf-curl symptoms in both hosts; however, plants inoculated with TYLCV-OM developed more severe symptoms. Plants infected with ToLCB in the presence of either helper begomovirus resulted in more severe symptoms. Surprisingly, symptoms in infected with the alphasatellite together with either of the helper viruses and the betasatellite were attenuated and betasatellite DNA accumulation was substantially reduced. However, in the latter plants no concomitant reduction in the accumulation of helper virus DNA was observed. This is the first example of an attenuation of begomovirus-betasatellite symptoms by this unusual class of alphasatellites. This observation suggests that some DNA-2 alphasatellites encode a pathogenicity determinant that may modulate begomovirus-betasatellite infection by reducing betasatellite DNA accumulation.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.025288-0
2011-03-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/jgv/92/3/706.html?itemId=/content/journal/jgv/10.1099/vir.0.025288-0&mimeType=html&fmt=ahah

References

  1. Argüello-Astorga, G. R. & Ruiz-Medrano, R. ( 2001; ). An iteron-related domain is associated to Motif 1 in the replication proteins of geminiviruses: identification of potential interacting amino acid-base pairs by a comparative approach. Arch Virol 146, 1465–1485.[CrossRef]
    [Google Scholar]
  2. Argüello-Astorga, G. R., Guevara-González, R. G., Herrera-Estrella, L. R. & Rivera-Bustamante, R. F. ( 1994; ). Geminivirus replication origins have a group-specific organization of iterative elements: a model for replication. Virology 203, 90–100.[CrossRef]
    [Google Scholar]
  3. Briddon, R. W. & Stanley, J. ( 2006; ). Sub-viral agents associated with plant single-stranded DNA viruses. Virology 344, 198–210.[CrossRef]
    [Google Scholar]
  4. Briddon, R. W., Bull, S. E., Amin, I., Idris, A. M., Mansoor, S., Bedford, I. D., Dhawan, P., Rishi, N., Siwatch, S. & other authors ( 2003; ). Diversity of DNA β; a satellite molecule associated with some monopartite begomoviruses. Virology 312, 106–121.[CrossRef]
    [Google Scholar]
  5. Briddon, R. W., Bull, S. E., Amin, I., Mansoor, S., Bedford, I. D., Rishi, N., Siwatch, S. S., Zafar, M. Y., Abdel-Salam, A. M. & Markham, P. G. ( 2004; ). Diversity of DNA 1; a satellite-like molecule associated with monopartite begomovirus-DNA β complexes. Virology 324, 462–474.[CrossRef]
    [Google Scholar]
  6. Briddon, R. W., Brown, J. K., Moriones, E., Stanley, J., Zerbini, M., Zhou, X. & Fauquet, C. M. ( 2008; ). Recommendations for the classification and nomenclature of the DNA-β satellites of begomoviruses. Arch Virol 153, 763–781.[CrossRef]
    [Google Scholar]
  7. Brown, J. K. ( 2007a; ). The Bemisia tabaci complex: genetic and phenotypic variability drives begomovirus spread and virus diversification. Plant Dis 1, 25–56.
    [Google Scholar]
  8. Brown, J. K. ( 2007b; ). The Bemisia tabaci species complex: genetic and phenotypic variation and relevance to TYLCV-vector interactions. In Tomato Yellow Leaf Curl Virus Disease, pp. 25–55. Edited by Czosnek, H.. New York, NY. : Springer.
    [Google Scholar]
  9. Brown, J. K. ( 2010; ). Phylogenetic biology of the Bemisia tabaci sibling species group. In Bemisia: Bionomics and Management of a Global Pest , pp. 31–67. Edited by Stansly, P. A. & Naranjo, S. E.. Amsterdam. : Springer.
    [Google Scholar]
  10. Cui, X., Tao, X., Xie, Y., Fauquet, C. M. & Zhou, X. ( 2004; ). A DNA β associated with Tomato yellow leaf curl China virus is required for symptom induction. J Virol 78, 13966–13974.[CrossRef]
    [Google Scholar]
  11. Cui, X., Li, G., Wang, D., Hu, D. & Zhou, X. ( 2005; ). A begomovirus DNA β encoded protein binds DNA, function as a suppressor of RNA silencing, and targets the cell nucleus. J Virol 79, 10764–10775.[CrossRef]
    [Google Scholar]
  12. Doyle, J. J. & Doyle, J. L. ( 1987; ). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19, 11–15.
    [Google Scholar]
  13. Dry, I. B., Krake, L. R., Rigden, J. E. & Rezaian, M. A. ( 1997; ). A novel subviral agent associated with a geminivirus: the first report of a DNA satellite. Proc Natl Acad Sci U S A 94, 7088–7093.[CrossRef]
    [Google Scholar]
  14. Fauquet, C. M., Bisaro, D. M., Briddon, R. W., Brown, J. K., Harrison, B. D., Rybicki, E. P., Stenger, D. C. & Stanley, J. ( 2003; ). Revision of taxonomic criteria for species demarcation in the family Geminiviridae, and an updated list of begomovirus species. Arch Virol 148, 405–421.[CrossRef]
    [Google Scholar]
  15. Fauquet, C. M., Briddon, R. W., Brown, J. K., Moriones, E., Stanley, J., Zerbini, M. & Zhou, X. ( 2008; ). Geminivirus strains demarcation and nomenclature. Arch Virol 153, 783–821.[CrossRef]
    [Google Scholar]
  16. Garcia-Andres, S., Monci, F., Navas-Castillo, J. & Moriones, E. ( 2006; ). Begomovirus genetic diversity in the native plant reservoir Solanum nigrum: evidence for the presence of a new virus species of recombinant nature. Virology 350, 433–442.[CrossRef]
    [Google Scholar]
  17. Garcia-Arenal, F., Fraile, A. & Malpica, J. M. ( 2001; ). Variability and genetic structure of plant virus populations. Annu Rev Phytopathol 39, 157–186.[CrossRef]
    [Google Scholar]
  18. Hanley-Bowdoin, L., Settlage, S. B., Orozco, B. M., Nagar, S. & Robertson, D. ( 2000; ). Geminiviruses: models for plant DNA replication, transcription, and cell cycle regulation. Crit Rev Biochem Mol Biol 35, 105–140.
    [Google Scholar]
  19. Hellens, R. P., Edwards, E. A., Leyland, N. R., Bean, S. & Mullineaux, P. M. ( 2000; ). pGreen: a versatile and flexible binary Ti vector for Agrobacterium-mediated plant transformation. Plant Mol Biol 42, 819–832.[CrossRef]
    [Google Scholar]
  20. Hussain, M., Mansoor, S., Iram, S., Fatima, A. N. & Zafar, Y. ( 2005; ). The nuclear shuttle protein of Tomato leaf curl New Delhi virus is a pathogenicity determinant. J Virol 79, 4434–4439.[CrossRef]
    [Google Scholar]
  21. Idris, A. M. & Brown, J. K. ( 1998; ). Sinaloa tomato leaf curl geminivirus STLCV: biological and molecular evidence for a new subgroup III virus. Phytopathology 88, 648–657.[CrossRef]
    [Google Scholar]
  22. Idris, A. M., Briddon, R. W., Bull, S. E. & Brown, J. K. ( 2005; ). Cotton leaf curl Gezira virus-satellite DNAs represent a divergent, geographically isolated Nile Basin lineage: predictive identification of a satDNA Rep-binding motif. Virus Res 109, 19–32.[CrossRef]
    [Google Scholar]
  23. Idris, A. M., Guerrero, J. C. & Brown, J. K. ( 2007; ). Two distinct isolates of Tomato yellow leaf curl virus threaten tomato production in Arizona and Sonora, Mexico. Plant Dis 91, 910.
    [Google Scholar]
  24. Inoue-Nagata, A. K., Albuquerque, L. C., Rocha, W. B. & Nagata, T. ( 2004; ). A simple method for cloning the complete begomovirus genome using the bacteriophage phi29 DNA polymerase. J Virol Methods 116, 209–211.[CrossRef]
    [Google Scholar]
  25. Jose, J. & Usha, R. ( 2003; ). Bhendi yellow vein mosaic disease in India is caused by association of a DNA β satellite with a begomovirus. Virology 305, 310–317.[CrossRef]
    [Google Scholar]
  26. Jupin, I., Kouchovsky, F., Jouanneau, F. & Gronenborn, B. ( 1994; ). Movement of tomato yellow leaf curl geminivirus TYLCV: involvement of the protein encoded by ORF C4. Virology 204, 82–90.[CrossRef]
    [Google Scholar]
  27. Khan, A. J., Idris, A. M., Al-Saady, N. A., Al-Mahruki, M. S., Al-Subhi, A. M. & Brown, J. K. ( 2008; ). A divergent isolate of Tomato yellow leaf curl virus from Oman with an associated betasatellite satellite: an evolutionary link between Asian and the Middle East virus-satellite complexes. Virus Genes 36, 169–176.[CrossRef]
    [Google Scholar]
  28. Kon, T., Rojas, M. R., Abdourhamane, I. K. & Gilbertson, R. L. ( 2009; ). Roles and interactions of begomoviruses and satellite DNAs associated with okra leaf curl disease in Mali, West Africa. J Gen Virol 90, 1001–1013.[CrossRef]
    [Google Scholar]
  29. Krake, L. R., Rezaian, M. A. & Dry, I. B. ( 1998; ). Expression of the tomato leaf curl geminivirus C4 gene produces virus-like symptoms in transgenic plants. Mol Plant Microbe Interact 11, 413–417.[CrossRef]
    [Google Scholar]
  30. Laufs, J., Traut, W., Heyraud, F., Matzeit, V., Rogers, S. G., Schell, J. & Gronenborn, B. ( 1995; ). In vitro cleavage and joining at the viral origin of replication by the replication initiator protein of tomato yellow leaf curl virus. Proc Natl Acad Sci U S A 92, 3879–3883.[CrossRef]
    [Google Scholar]
  31. Mansoor, S., Khan, S. H., Bashir, A., Saeed, M., Zafar, Y., Malik, K. A., Briddon, R. W., Stanley, J. & Markham, P. G. ( 1999; ). Identification of a novel circular single-stranded DNA associated with cotton leaf curl disease in Pakistan. Virology 259, 190–199.[CrossRef]
    [Google Scholar]
  32. Mansoor, S., Briddon, R. W., Zafar, Y. & Stanley, J. ( 2003a; ). Geminivirus disease complexes: an emerging threat. Trends Plant Sci 8, 128–134.[CrossRef]
    [Google Scholar]
  33. Mansoor, S., Briddon, R. W., Bull, S. E., Bedford, I. D., Bashir, A., Hussain, M., Saeed, M., Zafar, M. Y., Malik, K. A. & other authors ( 2003b; ). Cotton leaf curl disease is associated with multiple monopartite begomoviruses supported by single DNA-β. Arch Virol 148, 1969–1986.[CrossRef]
    [Google Scholar]
  34. Martin, D. P., Williamson, C. & Posada, D. ( 2005; ). RDP2 recombination detection and analysis from sequence alignments. Bioinformatics 21, 260–262.[CrossRef]
    [Google Scholar]
  35. Moffat, A. S. ( 1999; ). Geminiviruses emerge as serious crop threat. Science 286, 1835.[CrossRef]
    [Google Scholar]
  36. Monci, F., Sanchez-Campos, S., Navas-Castillo, J. & Moriones, E. ( 2002; ). A natural recombinant between the geminiviruses Tomato yellow leaf curl Sardinia virus and Tomato yellow leaf curl virus exhibits a novel pathogenic phenotype and is becoming prevalent in Spanish populations. Virology 303, 317–326.[CrossRef]
    [Google Scholar]
  37. Nawaz-ul-Rehman, M. S., Nahid, N., Mansoor, S., Briddon, R. W. & Fauquet, C. M. ( 2010; ). Post-transcriptional gene silencing suppressor activity of two non-pathogenic alphasatellite associated with a begomovirus. Virology 405, 300–308.[CrossRef]
    [Google Scholar]
  38. Paprotka, T., Boiteux, L. S., Fonseca, M. E. N., Resende, R. O., Jeske, H., Faria, J. C. & Ribeiro, S. G. ( 2010; ). Genomic diversity of sweet potato geminiviruses in a Brazilian germplasm bank. Virus Res 149, 224–233.[CrossRef]
    [Google Scholar]
  39. Posada, D. & Crandall, K. A. ( 2001; ). Selecting models of nucleotide substitution: an application to human immunodeficiency virus 1 HIV-1. Mol Biol Evol 18, 897–906.[CrossRef]
    [Google Scholar]
  40. Rigden, J. E., Dry, I. B., Mullineaux, P. M. & Rezaian, M. A. ( 1993; ). Mutagenesis of the virion-sense open reading frames of tomato leaf curl geminivirus. Virology 193, 1001–1005.[CrossRef]
    [Google Scholar]
  41. Rigden, J. E., Krake, L. R., Rezaian, M. A. & Dry, I. B. ( 1994; ). ORF C4 of tomato leaf curl geminivirus is a determinant of symptom severity. Virology 204, 847–850.[CrossRef]
    [Google Scholar]
  42. Rojas, M. R., Jiang, H., Salati, R., Xoconostle-Cazares, B., Sudashana, M. R., Lucas, W. J. & Gilbertson, R. L. ( 2001; ). Functional analysis of proteins involved in movement of monopartite begomovirus, Tomato yellow leaf curl virus. Virology 291, 110–125.[CrossRef]
    [Google Scholar]
  43. Rojas, M. R., Hagen, C., Lucas, W. J. & Gilbertson, R. L. ( 2005; ). Exploiting chinks in the plant's armor: evolution and emergence of geminiviruses. Annu Rev Phytopathol 43, 361–394.[CrossRef]
    [Google Scholar]
  44. Romay, G., Chirinos, D., Geraud-Pouey, F. & Desbiez, C. ( 2010; ). Association of atypical alphasatellite with a bipartite New World begomovirus. Arch Virol 155, 1843–1847.[CrossRef]
    [Google Scholar]
  45. Saeed, M., Behjatnia, S. A. A., Mansoor, S., Zafar, Y., Hasnain, S. & Rezaian, M. A. ( 2005; ). A single complementary-sense transcript of a geminiviral DNA β satellite is determinant of pathogenicity. Mol Plant Microbe Interact 18, 7–14.[CrossRef]
    [Google Scholar]
  46. Saunders, K. & Stanley, J. ( 1999; ). A nanovirus-like component associated with yellow vein disease of Ageratum conyzoides: evidence for interfamilial recombination between plant DNA viruses. Virology 264, 142–152.[CrossRef]
    [Google Scholar]
  47. Saunders, K., Bedford, I. D., Briddon, R. W., Markham, P. G., Wong, S. M. & Stanley, J. ( 2000; ). A unique virus complex causes Ageratum yellow vein disease. Proc Natl Acad Sci U S A 97, 6890–6895.[CrossRef]
    [Google Scholar]
  48. Saunders, K., Bedford, I. D. & Stanley, J. ( 2002; ). Adaptation from whitefly to leafhopper transmission of an autonomously replicating nanovirus-like DNA component associated with ageratum yellow vein disease. J Gen Virol 83, 907–913.
    [Google Scholar]
  49. Saunders, K., Norman, A., Gucciardo, S. & Stanley, J. ( 2004; ). The DNA β satellite component associated with ageratum yellow vein disease encodes an essential pathogenicity protein (βC1). Virology 324, 37–47.[CrossRef]
    [Google Scholar]
  50. Saunders, K., Briddon, R. W. & Stanley, J. ( 2008; ). Replication promiscuity of DNA-β satellites associated with monopartite begomoviruses; deletion mutagenesis of the Ageratum yellow vein virus DNA-β satellite localizes sequences involved in replication. J Gen Virol 89, 3165–3172.[CrossRef]
    [Google Scholar]
  51. Sawyer, S. ( 1989; ). Statistical tests for detecting gene conversions. Mol Biol Evol 6, 526–538.
    [Google Scholar]
  52. Saxena, S., Hallan, V., Singh, B. P. & Sane, P. V. ( 1998; ). Nucleotide sequence and intergeminiviral homologies of the DNA-A of papaya leaf curl geminivirus from India. Biochem Mol Biol Int 45, 101–113.
    [Google Scholar]
  53. Smith, J. M. ( 1992; ). Analysis of the mosaic structure of genes. J Mol Evol 34, 126–129.
    [Google Scholar]
  54. Stanley, J., Bisaro, D. M., Briddon, R. W., Brown, J. K., Fauquet, C. M., Harrison, B. D., Rybicki, E. P. & Stenger, D. C. ( 2005; ). Family Geminiviridae. In Virus Taxonomy: Eighth Report of the International Committee on Taxonomy of Viruses, 8th edn, pp. 301–326. Edited by Fauquet, C. M., Mayo, M. A., Maniloff, J., Desselberger, U. & Ball, L. A.. London. : Elsevier/Academic Press.
    [Google Scholar]
  55. Stenger, D. C., Revington, G., Stevenson, M. C. & Bisaro, D. M. ( 1991; ). Replicational release of geminivirus genomes from tandemly repeated copies: evidence for rolling circle replication of a plant viral DNA. Proc Natl Acad Sci U S A 88, 8029–8033.[CrossRef]
    [Google Scholar]
  56. Swofford, D. L. ( 2002; ). paup*: phylogenetic analysis using parsimony (and other methods), version 4.0b10. Sunderland, MA: Sinauer Associates.
  57. Weiller, G. F. ( 1998; ). Phylogenetic profiles: a graphical method for detecting genetic recombinations in homologous sequences. Mol Biol Evol 15, 326–335.[CrossRef]
    [Google Scholar]
  58. Wu, P.-J. & Zhou, X.-P. ( 2005; ). Interaction between a nanovirus-like component and the Tobacco curly shoot virus/satellite complex. Acta Biochim Biophys Sin (Shanghai) 37, 25–31.[CrossRef]
    [Google Scholar]
  59. Zhou, X., Xei, Y., Tao, X., Zhang, Z., Li, Z. & Fauquet, C. ( 2003; ). Characterization of DNAB associated with begomoviruses in China and evidence for co-evolution with their cognate viral DNA-A. J Gen Virol 84, 237–247.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.025288-0
Loading
/content/journal/jgv/10.1099/vir.0.025288-0
Loading

Data & Media loading...

Supplements

vol. , part 3, pp. 706–717

Primers and expected size products used in the detection of helper virus and satellite molecules in tomato field samples. Host range of Tomato leaf curl Oman virus (ToLCOMV). Disease symptoms in and caused by Tomato leaf curl Oman virus (ToLCOMV) infection. Detection of begomovirus using specific PCR primers.

[ Single PDF file] (107 kB)



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error