Influenza virus non-structural protein 1 (NS1) is the centrepiece of the viral response to the host interferon (IFN) system. NS1 has been demonstrated previously to be a potential therapeutic target for antiviral therapy by identification of specific small-molecule inhibitors. This study demonstrated the biological mechanism for a potent new NS1 antagonist. Compound JJ3297 inhibited virus replication by more than three orders of magnitude without affecting cell viability. Importantly, it efficiently reversed NS1-induced inhibition of IFN mRNA production. The hypothesis was tested that JJ3297 facilitates IFN production in infected cells, leading to protection of the surrounding uninfected cells. Accordingly, the compound efficiently prevented virus spread through a cell population during a 48 h multi-cycle infection initiated at a very low m.o.i. Consistent with the hypothesis, the compound had no detectable influence on a 6 h single-cycle infection initiated at a high m.o.i. The effect of JJ3297 on virus replication was not caused by inhibition of NS1 expression or its mislocalization in the cell. JJ3297 facilitated the induction of an IFN-like antiviral state, resulting in increased resistance to subsequent challenge with vesicular stomatitis virus. The activity of JJ3297 absolutely required the function of cellular RNase L, indicating that an intact IFN system is required for function of the compound. These results support a model in which inhibition of NS1 function results in restoration of the IFN-induced antiviral state and inhibition of virus replication and spread. This represents a new direction for anti-influenza virus drug development that exploits the IFN pathway to challenge virus replication.


Article metrics loading...

Loading full text...

Full text loading...



  1. Baskin, C. R., Bielefeldt-Ohmann, H., García-Sastre, A., Tumpey, T. M., Van Hoeven, N., Carter, V. S., Thomas, M. J., Proll, S., Solorzano, A. & other authors(2007). Functional genomic and serological analysis of the protective immune response resulting from vaccination of macaques with an NS1-truncated influenza virus. J Virol 81, 11817–11827.[CrossRef] [Google Scholar]
  2. Basler, C. F. & Aguilar, P. V.(2008). Progress in identifying virulence determinants of the 1918 H1N1 and the Southeast Asian H5N1 influenza A viruses. Antiviral Res 79, 166–178.[CrossRef] [Google Scholar]
  3. Basler, C. F., Reid, A. H., Dybing, J. K., Janczewski, T. A., Fanning, T. G., Zheng, H., Salvatore, M., Perdue, M. L., Swayne, D. E. & other authors(2001). Sequence of the 1918 pandemic influenza virus nonstructural gene (NS) segment and characterization of recombinant viruses bearing the 1918 NS genes. Proc Natl Acad Sci U S A 98, 2746–2751.[CrossRef] [Google Scholar]
  4. Basu, D., Walkiewicz, M. P., Frieman, M., Baric, R. S., Auble, D. T. & Engel, D. A.(2009). Novel influenza virus NS1 antagonists block replication and restore innate immune function. J Virol 83, 1881–1891.[CrossRef] [Google Scholar]
  5. Bracci, L., Canini, I., Puzelli, S., Sestili, P., Venditti, M., Spada, M., Donatelli, I., Belardelli, F. & Proietti, E.(2005). Type I IFN is a powerful mucosal adjuvant for a selective intranasal vaccination against influenza virus in mice and affects antigen capture at mucosal level. Vaccine 23, 2994–3004.[CrossRef] [Google Scholar]
  6. Bürger, H., Steuler, H. & Scholtissek, C.(1985). A mutant of fowl plague virus (influenza A) with an enhanced electrophoretic mobility of RNA segment 8. J Gen Virol 66, 1679–1686.[CrossRef] [Google Scholar]
  7. Chambers, T. M., Quinlivan, M., Sturgill, T., Cullinane, A., Horohov, D. W., Zamarin, D., Arkins, S., García-Sastre, A. & Palese, P.(2009). Influenza A viruses with truncated NS1 as modified live virus vaccines: pilot studies of safety and efficacy in horses. Equine Vet J 41, 87–92.[CrossRef] [Google Scholar]
  8. Chen, Z., Li, Y. & Krug, R. M.(1999). Influenza A virus NS1 protein targets poly(A)-binding protein II of the cellular 3′-end processing machinery. EMBO J 18, 2273–2283.[CrossRef] [Google Scholar]
  9. Chien, C. Y., Xu, Y., Xiao, R., Aramini, J. M., Sahasrabudhe, P. V., Krug, R. M. & Montelione, G. T.(2004). Biophysical characterization of the complex between double-stranded RNA and the N-terminal domain of the NS1 protein from influenza A virus: evidence for a novel RNA-binding mode. Biochemistry 43, 1950–1962.[CrossRef] [Google Scholar]
  10. Das, K., Aramini, J. M., Ma, L. C., Krug, R. M. & Arnold, E.(2010). Structures of influenza A proteins and insights into antiviral drug targets. Nat Struct Mol Biol 17, 530–538.[CrossRef] [Google Scholar]
  11. Donelan, N. R., Basler, C. F. & García-Sastre, A.(2003). A recombinant influenza A virus expressing an RNA-binding-defective NS1 protein induces high levels of beta interferon and is attenuated in mice. J Virol 77, 13257–13266.[CrossRef] [Google Scholar]
  12. Egorov, A., Brandt, S., Sereinig, S., Romanova, J., Ferko, B., Katinger, D., Grassauer, A., Alexandrova, G., Katinger, H. & other authors(1998). Transfectant influenza A viruses with long deletions in the NS1 protein grow efficiently in Vero cells. J Virol 72, 6437–6441. [Google Scholar]
  13. Falcón, A. M., Fernandez-Sesma, A., Nakaya, Y., Moran, T. M., Ortín, J. & García-Sastre, A.(2005). Attenuation and immunogenicity in mice of temperature-sensitive influenza viruses expressing truncated NS1 proteins. J Gen Virol 86, 2817–2821.[CrossRef] [Google Scholar]
  14. Gack, M. U., Albrecht, R. A., Urano, T., Inn, K. S., Huang, I. C., Carnero, E., Farzan, M., Inoue, S., Jung, J. U. & other authors(2009). Influenza A virus NS1 targets the ubiquitin ligase TRIM25 to evade recognition by the host viral RNA sensor RIG-I. Cell Host Microbe 5, 439–449.[CrossRef] [Google Scholar]
  15. Garaigorta, U., Falcón, A. M. & Ortín, J.(2005). Genetic analysis of influenza virus NS1 gene: a temperature-sensitive mutant shows defective formation of virus particles. J Virol 79, 15246–15257.[CrossRef] [Google Scholar]
  16. García-Sastre, A., Egorov, A., Matassov, D., Brandt, S., Levy, D. E., Durbin, J. E., Palese, P. & Muster, T.(1998). Influenza A virus lacking the NS1 gene replicates in interferon-deficient systems. Virology 252, 324–330.[CrossRef] [Google Scholar]
  17. Garten, R. J., Davis, C. T., Russell, C. A., Shu, B., Lindstrom, S., Balish, A., Sessions, W. M., Xu, X., Skepner, E. & other authors(2009). Antigenic and genetic characteristics of swine-origin 2009 A(H1N1) influenza viruses circulating in humans. Science 325, 197–201.[CrossRef] [Google Scholar]
  18. Guo, Z., Chen, L. M., Zeng, H., Gomez, J. A., Plowden, J., Fujita, T., Katz, J. M., Donis, R. O. & Sambhara, S.(2007). NS1 protein of influenza A virus inhibits the function of intracytoplasmic pathogen sensor, RIG-I. Am J Respir Cell Mol Biol 36, 263–269.[CrossRef] [Google Scholar]
  19. Hai, R., Marínez-Sobrido, L., Fraser, K. A., Ayllon, J., García-Sastre, A. & Palese, P.(2008). Influenza B virus NS1-truncated mutants: live-attenuated vaccine approach. J Virol 82, 10580–10590.[CrossRef] [Google Scholar]
  20. Hale, B. G., Randall, R. E., Ortín, J. & Jackson, D.(2008). The multifunctional NS1 protein of influenza A viruses. J Gen Virol 89, 2359–2376.[CrossRef] [Google Scholar]
  21. Hatada, E. & Fukuda, R.(1992). Binding of influenza A virus NS1 protein to dsRNA in vitro. J Gen Virol 73, 3325–3329.[CrossRef] [Google Scholar]
  22. Hatada, E., Hasegawa, M., Shimizu, K., Hatanaka, M. & Fukuda, R.(1990). Analysis of influenza A virus temperature-sensitive mutants with mutations in RNA segment 8. J Gen Virol 71, 1283–1292.[CrossRef] [Google Scholar]
  23. Hatada, E., Takizawa, T. & Fukuda, R.(1992). Specific binding of influenza A virus NS1 protein to the virus minus-sense RNA in vitro. J Gen Virol 73, 17–25.[CrossRef] [Google Scholar]
  24. Hatada, E., Saito, S., Okishio, N. & Fukuda, R.(1997). Binding of the influenza virus NS1 protein to model genome RNAs. J Gen Virol 78, 1059–1063. [Google Scholar]
  25. Jackson, D., Hossain, M. J., Hickman, D., Perez, D. R. & Lamb, R. A.(2008). A new influenza virus virulence determinant: the NS1 protein four C-terminal residues modulate pathogenicity. Proc Natl Acad Sci U S A 105, 4381–4386.[CrossRef] [Google Scholar]
  26. Jain, S., Kamimoto, L., Bramley, A. M., Schmitz, A. M., Benoit, S. R., Louie, J., Sugerman, D. E., Druckenmiller, J. K., Ritger, K. A. & other authors(2009). Hospitalized patients with 2009 H1N1 influenza in the United States, April–June 2009. N Engl J Med 361, 1935–1944.[CrossRef] [Google Scholar]
  27. Kochs, G., García-Sastre, A. & Martínez-Sobrido, L.(2007a). Multiple anti-interferon actions of the influenza A virus NS1 protein. J Virol 81, 7011–7021.[CrossRef] [Google Scholar]
  28. Kochs, G., Koerner, I., Thiel, L., Kothlow, S., Kaspers, B., Ruggli, N., Summerfield, A., Pavlovic, J., Stech, J. & other authors(2007b). Properties of H7N7 influenza A virus strain SC35M lacking interferon antagonist NS1 in mice and chickens. J Gen Virol 88, 1403–1409.[CrossRef] [Google Scholar]
  29. Koennecke, I., Boschek, C. B. & Scholtissek, C.(1981). Isolation and properties of a temperature-sensitive mutant (ts 412) of an influenza A virus recombinant with a ts lesion in the gene coding for the nonstructural protein. Virology 110, 16–25.[CrossRef] [Google Scholar]
  30. Krug, R. M. & Aramini, J. M.(2009). Emerging antiviral targets for influenza A virus. Trends Pharmacol Sci 30, 269–277.[CrossRef] [Google Scholar]
  31. Krug, R. M., Yuan, W., Noah, D. L. & Latham, A. G.(2003). Intracellular warfare between human influenza viruses and human cells: the roles of the viral NS1 protein. Virology 309, 181–189.[CrossRef] [Google Scholar]
  32. Kuo, R. L. & Krug, R. M.(2009). Influenza A virus polymerase is an integral component of the CPSF30–NS1A protein complex in infected cells. J Virol 83, 1611–1616.[CrossRef] [Google Scholar]
  33. Layne, S. P., Monto, A. S. & Taubenberger, J. K.(2009). Pandemic influenza: an inconvenient mutation. Science 323, 1560–1561.[CrossRef] [Google Scholar]
  34. Le Bon, A., Schiavoni, G., D'Agostino, G., Gresser, I., Belardelli, F. & Tough, D. F.(2001). Type I interferons potently enhance humoral immunity and can promote isotype switching by stimulating dendritic cells in vivo. Immunity 14, 461–470.[CrossRef] [Google Scholar]
  35. Li, S., Min, J. Y., Krug, R. M. & Sen, G. C.(2006). Binding of the influenza A virus NS1 protein to PKR mediates the inhibition of its activation by either PACT or double-stranded RNA. Virology 349, 13–21.[CrossRef] [Google Scholar]
  36. Lu, Y., Wambach, M., Katze, M. G. & Krug, R. M.(1995). Binding of the influenza virus NS1 protein to double-stranded RNA inhibits the activation of the protein kinase that phosphorylates the eIF-2 translation initiation factor. Virology 214, 222–228.[CrossRef] [Google Scholar]
  37. Ludwig, S. & Wolff, T.(2009). Influenza A virus TRIMs the type I interferon response. Cell Host Microbe 5, 420–421.[CrossRef] [Google Scholar]
  38. Ludwig, S., Vogel, U. & Scholtissek, C.(1995). Amino acid replacements leading to temperature-sensitive defects of the NS1 protein of influenza A virus. Arch Virol 140, 945–950.[CrossRef] [Google Scholar]
  39. Malathi, K., Dong, B., Gale, M., Jr & Silverman, R. H.(2007). Small self-RNA generated by RNase L amplifies antiviral innate immunity. Nature 448, 816–819.[CrossRef] [Google Scholar]
  40. Mibayashi, M., Martínez-Sobrido, L., Loo, Y. M., Cárdenas, W. B., Gale, M., Jr & García-Sastre, A.(2007). Inhibition of retinoic acid-inducible gene I-mediated induction of beta interferon by the NS1 protein of influenza A virus. J Virol 81, 514–524.[CrossRef] [Google Scholar]
  41. Min, J. Y. & Krug, R. M.(2006). The primary function of RNA binding by the influenza A virus NS1 protein in infected cells: inhibiting the 2′-5′ oligo (A) synthetase/RNase L pathway. Proc Natl Acad Sci U S A 103, 7100–7105.[CrossRef] [Google Scholar]
  42. Min, J. Y., Li, S., Sen, G. C. & Krug, R. M.(2007). A site on the influenza A virus NS1 protein mediates both inhibition of PKR activation and temporal regulation of viral RNA synthesis. Virology 363, 236–243.[CrossRef] [Google Scholar]
  43. Mueller, S. N., Langley, W. A., Carnero, E., García-Sastre, A. & Ahmed, R.(2010). Immunization with live attenuated influenza viruses that express altered NS1 proteins results in potent and protective memory CD8+ T-cell responses. J Virol 84, 1847–1855.[CrossRef] [Google Scholar]
  44. Nemeroff, M. E., Barabino, S. M., Li, Y., Keller, W. & Krug, R. M.(1998). Influenza virus NS1 protein interacts with the cellular 30 kDa subunit of CPSF and inhibits 3′end formation of cellular pre-mRNAs. Mol Cell 1, 991–1000.[CrossRef] [Google Scholar]
  45. Noah, D. L., Twu, K. Y. & Krug, R. M.(2003). Cellular antiviral responses against influenza A virus are countered at the posttranscriptional level by the viral NS1A protein via its binding to a cellular protein required for the 3′ end processing of cellular pre-mRNAs. Virology 307, 386–395.[CrossRef] [Google Scholar]
  46. Ornelles, D. A. & Shenk, T.(1991). Localization of the adenovirus early region 1B 55-kilodalton protein during lytic infection: association with nuclear viral inclusions requires the early region 4 34-kilodalton protein. J Virol 65, 424–429. [Google Scholar]
  47. Palese, P.(2006). Making better influenza virus vaccines? Emerg Infect Dis 12, 61–65.[CrossRef] [Google Scholar]
  48. Palese, P. & García-Sastre, A.(2002). Influenza vaccines: present and future. J Clin Invest 110, 9–13.[CrossRef] [Google Scholar]
  49. Pekosz, A. & Glass, G. E.(2008). Emerging viral diseases. Md Med 9, 11–16. [Google Scholar]
  50. Pichlmair, A., Schulz, O., Tan, C. P., Naslund, T. I., Liljestrom, P., Weber, F. & Reis e Sousa, C.(2006). RIG-I-mediated antiviral responses to single-stranded RNA bearing 5′-phosphates. Science 314, 997–1001.[CrossRef] [Google Scholar]
  51. Proietti, E., Bracci, L., Puzelli, S., Di Pucchio, T., Sestili, P., De Vincenzi, E., Venditti, M., Capone, I., Seif, I. & other authors(2002). Type I IFN as a natural adjuvant for a protective immune response: lessons from the influenza vaccine model. J Immunol 169, 375–383.[CrossRef] [Google Scholar]
  52. Qian, X. Y., Chien, C. Y., Lu, Y., Montelione, G. T. & Krug, R. M.(1995). An amino-terminal polypeptide fragment of the influenza virus NS1 protein possesses specific RNA-binding activity and largely helical backbone structure. RNA 1, 948–956. [Google Scholar]
  53. Qiu, Y. & Krug, R. M.(1994). The influenza virus NS1 protein is a poly(A)-binding protein that inhibits nuclear export of mRNAs containing poly(A). J Virol 68, 2425–2432. [Google Scholar]
  54. Qiu, Y., Nemeroff, M. & Krug, R. M.(1995). The influenza virus NS1 protein binds to a specific region in human U6 snRNA and inhibits U6–U2 and U6–U4 snRNA interactions during splicing. RNA 1, 304–316. [Google Scholar]
  55. Reed, L. J. & Muench, H.(1938). A simple method of estimating fifty per cent endpoints. Am J Epidemiol 27, 493–497. [Google Scholar]
  56. Reid, A. H., Taubenberger, J. K. & Fanning, T. G.(2001). The 1918 Spanish influenza: integrating history and biology. Microbes Infect 3, 81–87.[CrossRef] [Google Scholar]
  57. Richt, J. A., Lekcharoensuk, P., Lager, K. M., Vincent, A. L., Loiacono, C. M., Janke, B. H., Wu, W. H., Yoon, K. J., Webby, R. J. & other authors(2006). Vaccination of pigs against swine influenza viruses by using an NS1-truncated modified live-virus vaccine. J Virol 80, 11009–11018.[CrossRef] [Google Scholar]
  58. Romanova, J., Krenn, B. M., Wolschek, M., Ferko, B., Romanovskaja-Romanko, E., Morokutti, A., Shurygina, A. P., Nakowitsch, S., Ruthsatz, T. & other authors(2009). Preclinical evaluation of a replication-deficient intranasal ΔNS1 H5N1 influenza vaccine. PLoS ONE 4, e5984.[CrossRef] [Google Scholar]
  59. Satterly, N., Tsai, P. L., van Deursen, J., Nussenzveig, D. R., Wang, Y., Faria, P. A., Levay, A., Levy, D. E. & Fontoura, B. M.(2007). Influenza virus targets the mRNA export machinery and the nuclear pore complex. Proc Natl Acad Sci U S A 104, 1853–1858.[CrossRef] [Google Scholar]
  60. Schickli, J. H., Flandorfer, A., Nakaya, T., Martíinez-Sobrido, L., García-Sastre, A. & Palese, P.(2001). Plasmid-only rescue of influenza A virus vaccine candidates. Philos Trans R Soc Lond B Biol Sci 356, 1965–1973.[CrossRef] [Google Scholar]
  61. Shimizu, K., Mullinix, M. G., Chanock, R. M. & Murphy, B. R.(1983). Temperature-sensitive mutants of influenza A/Udorn/72 (H3N2) virus. III. Genetic analysis of temperature-dependent host range mutants. Virology 124, 35–44.[CrossRef] [Google Scholar]
  62. Silverman, R. H.(2007a). Viral encounters with 2′,5′-oligoadenylate synthetase and RNase L during the interferon antiviral response. J Virol 81, 12720–12729.[CrossRef] [Google Scholar]
  63. Silverman, R. H.(2007b). A scientific journey through the 2–5A/RNase L system. Cytokine Growth Factor Rev 18, 381–388.[CrossRef] [Google Scholar]
  64. Solórzano, A., Webby, R. J., Lager, K. M., Janke, B. H., García-Sastre, A. & Richt, J. A.(2005). Mutations in the NS1 protein of swine influenza virus impair anti-interferon activity and confer attenuation in pigs. J Virol 79, 7535–7543.[CrossRef] [Google Scholar]
  65. Takada, A., Robison, C., Goto, H., Sanchez, A., Murti, K. G., Whitt, M. A. & Kawaoka, Y.(1997). A system for functional analysis of Ebola virus glycoprotein. Proc Natl Acad Sci U S A 94, 14764–14769.[CrossRef] [Google Scholar]
  66. Talon, J., Salvatore, M., O'Neill, R. E., Nakaya, Y., Zheng, H., Muster, T., García-Sastre, A. & Palese, P.(2000). Influenza A and B viruses expressing altered NS1 proteins: a vaccine approach. Proc Natl Acad Sci U S A 97, 4309–4314.[CrossRef] [Google Scholar]
  67. Taubenberger, J. K., Reid, A. H., Janczewski, T. A. & Fanning, T. G.(2001). Integrating historical, clinical and molecular genetic data in order to explain the origin and virulence of the 1918 Spanish influenza virus. Philos Trans R Soc Lond B Biol Sci 356, 1829–1839.[CrossRef] [Google Scholar]
  68. Tovey, M. G., Lallemand, C. & Thyphronitis, G.(2008). Adjuvant activity of type I interferons. Biol Chem 389, 541–545. [Google Scholar]
  69. Twu, K. Y., Noah, D. L., Rao, P., Kuo, R. L. & Krug, R. M.(2006). The CPSF30 binding site on the NS1A protein of influenza A virus is a potential antiviral target. J Virol 80, 3957–3965.[CrossRef] [Google Scholar]
  70. Twu, K. Y., Kuo, R. L., Marklund, J. & Krug, R. M.(2007). The H5N1 influenza virus NS genes selected after 1998 enhance virus replication in mammalian cells. J Virol 81, 8112–8121.[CrossRef] [Google Scholar]
  71. Vincent, A. L., Ma, W., Lager, K. M., Janke, B. H., Webby, R. J., García-Sastre, A. & Richt, J. A.(2007). Efficacy of intranasal administration of a truncated NS1 modified live influenza virus vaccine in swine. Vaccine 25, 7999–8009.[CrossRef] [Google Scholar]
  72. Wacheck, V., Egorov, A., Groiss, F., Pfeiffer, A., Fuereder, T., Hoeflmayer, D., Kundi, M., Popow-Kraupp, T., Redlberger-Fritz, M. & other authors(2010). A novel type of influenza vaccine: safety and immunogenicity of replication-deficient influenza virus created by deletion of the interferon antagonist NS1. J Infect Dis 201, 354–362.[CrossRef] [Google Scholar]
  73. Wang, W., Riedel, K., Lynch, P., Chien, C. Y., Montelione, G. T. & Krug, R. M.(1999). RNA binding by the novel helical domain of the influenza virus NS1 protein requires its dimer structure and a small number of specific basic amino acids. RNA 5, 195–205.[CrossRef] [Google Scholar]
  74. Wolstenholme, A. J., Barrett, T., Nichol, S. T. & Mahy, B. W.(1980). Influenza virus-specific RNA and protein syntheses in cells infected with temperature-sensitive mutants defective in the genome segment encoding nonstructural proteins. J Virol 35, 1–7. [Google Scholar]
  75. WHO(2009). Influenza (seasonal). Fact sheet no. 211. World Health Organization.
  76. Wressnigg, N., Shurygina, A. P., Wolff, T., Redlberger-Fritz, M., Popow-Kraupp, T., Muster, T., Egorov, A. & Kittel, C.(2009a). Influenza B mutant viruses with truncated NS1 proteins grow efficiently in Vero cells and are immunogenic in mice. J Gen Virol 90, 366–374.[CrossRef] [Google Scholar]
  77. Wressnigg, N., Voss, D., Wolff, T., Romanova, J., Ruthsatz, T., Mayerhofer, I., Reiter, M., Nakowitsch, S., Humer, J. & other authors(2009b). Development of a live-attenuated influenza B ΔNS1 intranasal vaccine candidate. Vaccine 27, 2851–2857.[CrossRef] [Google Scholar]

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error