1887

Abstract

The prime virulence determinant of highly pathogenic avian influenza viruses (HPAIVs) is the polybasic haemagglutinin (HA) cleavage site. However, engineering of a polybasic cleavage site into an avian influenza virus of low pathogenicity does not result in transformation into an HPAIV, indicating the importance of other adaptations. Here, the influence of amino acids adjacent to the HA cleavage site on virulence was studied. Most HPAIVs of subtype H5 carry serine or threonine at position 346 (corresponding to position 323 according to H3 numbering), whereas almost all low-pathogenic H5 viruses have valine. Moreover, all H5 low-pathogenic strains carry threonine at position 351 (corresponding to position 328 according to H3 numbering), suggesting that acquisition of a polybasic cleavage site involves several steps. This study generated a virus mutant derived from HPAIV A/Swan/Germany/R65/06 H5N1 (R65) with a monobasic cleavage site, R65-S-ER, and the following additional mutants: R65-V-ER with serine changed to valine at position 346, and R65-S-ETR and R65-V-ETR with threonine inserted at position 351. Moreover, in the R65 HA, serine was replaced with valine at position 346 (R65-V). Infection of chickens with R65-S-ETR or R65-S-ER led to slight transient respiratory symptoms, whereas R65-infected animals died within 2 days. However, chickens infected with R65-V survived longer than R65-infected animals, indicating that serine 346 in R65 HA contributes to virulence. These data suggest that evolution of H5 HPAIVs from low-pathogenic precursors, besides acquisition of a polybasic cleavage site, involves adaptation of neighbouring regions.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.023887-0
2011-01-01
2019-11-21
Loading full text...

Full text loading...

/deliver/fulltext/jgv/92/1/51.html?itemId=/content/journal/jgv/10.1099/vir.0.023887-0&mimeType=html&fmt=ahah

References

  1. Alexander, D. J. ( 2008; ). Avian influenza. In Manual of Diagnostic Tests & Vaccines for Terrestrial Animals, 6th edn, pp. 465–481. Edited by Vallat, B.. Office International des Épizooties.
    [Google Scholar]
  2. Bao, Y., Bolotov, P., Dernovoy, D., Kiryutin, B., Zaslavsky, L., Tatusova, T., Ostell, J. & Lipman, D. ( 2008; ). The influenza virus resource at the National Center for Biotechnology Information. J Virol 82, 596–601.[CrossRef]
    [Google Scholar]
  3. Bogs, J., Veits, J., Gohrbandt, S., Hundt, J., Stech, O., Breithaupt, A., Teifke, J. P., Mettenleiter, T. C. & Stech, J. ( 2010; ). Highly pathogenic H5N1 influenza viruses carry virulence determinants beyond the polybasic hemagglutinin cleavage site. PLoS ONE 5, e11826.[CrossRef]
    [Google Scholar]
  4. Bosch, F. X., Orlich, M., Klenk, H. D. & Rott, R. ( 1979; ). The structure of the hemagglutinin, a determinant for the pathogenicity of influenza viruses. Virology 95, 197–207.[CrossRef]
    [Google Scholar]
  5. Gabriel, G., Dauber, B., Wolff, T., Planz, O., Klenk, H. D. & Stech, J. ( 2005; ). The viral polymerase mediates adaptation of an avian influenza virus to a mammalian host. Proc Natl Acad Sci U S A 102, 18590–18595.[CrossRef]
    [Google Scholar]
  6. Garcia, M., Crawford, J. M., Latimer, J. W., Rivera-Cruz, E. & Perdue, M. L. ( 1996; ). Heterogeneity in the haemagglutinin gene and emergence of the highly pathogenic phenotype among recent H5N2 avian influenza viruses from Mexico. J Gen Virol 77, 1493–1504.[CrossRef]
    [Google Scholar]
  7. Garten, W. & Klenk, H.-D. ( 2008; ). Cleavage activation of the influenza virus hemagglutinin and its role in pathogenesis. In Avian Influenza, pp. 156–167. Edited by Klenk, H.-D., Matrosovich, M. N. & Stech, J.. Basel. : Karger.
    [Google Scholar]
  8. Garten, W., Bosch, F. X., Linder, D., Rott, R. & Klenk, H. D. ( 1981; ). Proteolytic activation of the influenza virus hemagglutinin: the structure of the cleavage site and the enzymes involved in cleavage. Virology 115, 361–374.[CrossRef]
    [Google Scholar]
  9. Garten, W., Linder, D., Rott, R. & Klenk, H. D. ( 1982; ). The cleavage site of the hemagglutinin of fowl plague virus. Virology 122, 186–190.[CrossRef]
    [Google Scholar]
  10. Gunther, I., Glatthaar, B., Doller, G. & Garten, W. ( 1993; ). A H1 hemagglutinin of a human influenza A virus with a carbohydrate-modulated receptor binding site and an unusual cleavage site. Virus Res 27, 147–160.[CrossRef]
    [Google Scholar]
  11. Ha, Y., Stevens, D. J., Skehel, J. J. & Wiley, D. C. ( 2001; ). X-ray structures of H5 avian and H9 swine influenza virus hemagglutinins bound to avian and human receptor analogs. Proc Natl Acad Sci U S A 98, 11181–11186.[CrossRef]
    [Google Scholar]
  12. Hoffmann, E., Neumann, G., Kawaoka, Y., Hobom, G. & Webster, R. G. ( 2000; ). A DNA transfection system for generation of influenza A virus from eight plasmids. Proc Natl Acad Sci U S A 97, 6108–6113.[CrossRef]
    [Google Scholar]
  13. Horimoto, T. & Kawaoka, Y. ( 1994; ). Reverse genetics provides direct evidence for a correlation of hemagglutinin cleavability and virulence of an avian influenza A virus. J Virol 68, 3120–3128.
    [Google Scholar]
  14. Horimoto, T., Ito, T., Alexander, D. J. & Kawaoka, Y. ( 1995a; ). Cleavability of hemagglutinin from an extremely virulent strain of avian influenza virus containing a unique cleavage site sequence. J Vet Med Sci 57, 927–930.[CrossRef]
    [Google Scholar]
  15. Horimoto, T., Rivera, E., Pearson, J., Senne, D., Krauss, S., Kawaoka, Y. & Webster, R. G. ( 1995b; ). Origin and molecular changes associated with emergence of a highly pathogenic H5N2 influenza virus in Mexico. Virology 213, 223–230.[CrossRef]
    [Google Scholar]
  16. Huang, R. T., Wahn, K., Klenk, H. D. & Rott, R. ( 1980; ). Fusion between cell membrane and liposomes containing the glycoproteins of influenza virus. Virology 104, 294–302.[CrossRef]
    [Google Scholar]
  17. Kalthoff, D., Breithaupt, A., Teifke, J. P., Globig, A., Harder, T., Mettenleiter, T. C. & Beer, M. ( 2008; ). Highly pathogenic avian influenza virus (H5N1) in experimentally infected adult mute swans. Emerg Infect Dis 14, 1267–1270.[CrossRef]
    [Google Scholar]
  18. Kawaoka, Y. & Webster, R. G. ( 1985; ). Evolution of the A/Chicken/Pennsylvania/83 (H5N2) influenza virus. Virology 146, 130–137.[CrossRef]
    [Google Scholar]
  19. Kawaoka, Y., Yamnikova, S., Chambers, T. M., Lvov, D. K. & Webster, R. G. ( 1990; ). Molecular characterization of a new hemagglutinin, subtype H14, of influenza A virus. Virology 179, 759–767.[CrossRef]
    [Google Scholar]
  20. Khatchikian, D., Orlich, M. & Rott, R. ( 1989; ). Increased viral pathogenicity after insertion of a 28S ribosomal RNA sequence into the haemagglutinin gene of an influenza virus. Nature 340, 156–157.[CrossRef]
    [Google Scholar]
  21. Maeda, T. & Ohnishi, S. ( 1980; ). Activation of influenza virus by acidic media causes hemolysis and fusion of erythrocytes. FEBS Lett 122, 283–287.[CrossRef]
    [Google Scholar]
  22. Matrosovich, M., Matrosovich, T., Carr, J., Roberts, N. A. & Klenk, H. D. ( 2003; ). Overexpression of the α-2,6-sialyltransferase in MDCK cells increases influenza virus sensitivity to neuraminidase inhibitors. J Virol 77, 8418–8425.[CrossRef]
    [Google Scholar]
  23. Morsy, J., Garten, W. & Rott, R. ( 1994; ). Activation of an influenza virus A/turkey/Oregon/71 HA insertion variant by the subtilisin-like endoprotease furin. Virology 202, 988–991.[CrossRef]
    [Google Scholar]
  24. Munster, V. J., Schrauwen, E. J., de Wit, E., van den Brand, J. M., Bestebroer, T. M., Herfst, S., Rimmelzwaan, G. F., Osterhaus, A. D. & Fouchier, R. A. ( 2010; ). Insertion of a multibasic cleavage motif into the hemagglutinin of a low-pathogenic avian influenza H6N1 virus induces a highly pathogenic phenotype. J Virol 84, 7953–7960.[CrossRef]
    [Google Scholar]
  25. Neumann, G. & Kawaoka, Y. ( 2006; ). Host range restriction and pathogenicity in the context of influenza pandemic. Emerg Infect Dis 12, 881–886.[CrossRef]
    [Google Scholar]
  26. Nobusawa, E., Aoyama, T., Kato, H., Suzuki, Y., Tateno, Y. & Nakajima, K. ( 1991; ). Comparison of complete amino acid sequences and receptor-binding properties among 13 serotypes of hemagglutinins of influenza A viruses. Virology 182, 475–485.[CrossRef]
    [Google Scholar]
  27. Pasick, J., Handel, K., Robinson, J., Copps, J., Ridd, D., Hills, K., Kehler, H., Cottam-Birt, C., Neufeld, J. & other authors ( 2005; ). Intersegmental recombination between the haemagglutinin and matrix genes was responsible for the emergence of a highly pathogenic H7N3 avian influenza virus in British Columbia. J Gen Virol 86, 727–731.[CrossRef]
    [Google Scholar]
  28. Pavlova, S. P., Veits, J., Keil, G. M., Mettenleiter, T. C. & Fuchs, W. ( 2009; ). Protection of chickens against H5N1 highly pathogenic avian influenza virus infection by live vaccination with infectious laryngotracheitis virus recombinants expressing H5 hemagglutinin and N1 neuraminidase. Vaccine 27, 773–785.[CrossRef]
    [Google Scholar]
  29. Perdue, M. L., Garcia, M., Beck, J., Brugh, M. & Swayne, D. E. ( 1996; ). An Arg-Lys insertion at the hemagglutinin cleavage site of an H5N2 avian influenza isolate. Virus Genes 12, 77–84.[CrossRef]
    [Google Scholar]
  30. Perdue, M. L., Garcia, M., Senne, D. & Fraire, M. ( 1997; ). Virulence-associated sequence duplication at the hemagglutinin cleavage site of avian influenza viruses. Virus Res 49, 173–186.[CrossRef]
    [Google Scholar]
  31. Rohm, C., Horimoto, T., Kawaoka, Y., Suss, J. & Webster, R. G. ( 1995; ). Do hemagglutinin genes of highly pathogenic avian influenza viruses constitute unique phylogenetic lineages? Virology 209, 664–670.[CrossRef]
    [Google Scholar]
  32. Saito, T., Horimoto, T., Kawaoka, Y., Senne, D. A. & Webster, R. G. ( 1994; ). Emergence of a potentially pathogenic H5N2 influenza virus in chickens. Virology 201, 277–284.[CrossRef]
    [Google Scholar]
  33. Senne, D. A., Panigrahy, B., Kawaoka, Y., Pearson, J. E., Suss, J., Lipkind, M., Kida, H. & Webster, R. G. ( 1996; ). Survey of the hemagglutinin (HA) cleavage site sequence of H5 and H7 avian influenza viruses: amino acid sequence at the HA cleavage site as a marker of pathogenicity potential. Avian Dis 40, 425–437.[CrossRef]
    [Google Scholar]
  34. Spackman, E., Senne, D. A., Myers, T. J., Bulaga, L. L., Garber, L. P., Perdue, M. L., Lohman, K., Daum, L. T. & Suarez, D. L. ( 2002; ). Development of a real-time reverse transcriptase PCR assay for type A influenza virus and the avian H5 and H7 hemagglutinin subtypes. J Clin Microbiol 40, 3256–3260.[CrossRef]
    [Google Scholar]
  35. Stech, J., Stech, O., Herwig, A., Altmeppen, H., Hundt, J., Gohrbandt, S., Kreibich, A., Weber, S., Klenk, H. D. & Mettenleiter, T. C. ( 2008; ). Rapid and reliable universal cloning of influenza A virus genes by target-primed plasmid amplification. Nucleic Acids Res 36, e139.[CrossRef]
    [Google Scholar]
  36. Stech, O., Veits, J., Weber, S., Deckers, D., Schroer, D., Vahlenkamp, T. W., Breithaupt, A., Teifke, J., Mettenleiter, T. C. & Stech, J. ( 2009; ). Acquisition of a polybasic hemagglutinin cleavage site by a low-pathogenic avian influenza virus is not sufficient for immediate transformation into a highly pathogenic strain. J Virol 83, 5864–5868.[CrossRef]
    [Google Scholar]
  37. Stieneke-Grober, A., Vey, M., Angliker, H., Shaw, E., Thomas, G., Roberts, C., Klenk, H. D. & Garten, W. ( 1992; ). Influenza virus hemagglutinin with multibasic cleavage site is activated by furin, a subtilisin-like endoprotease. EMBO J 11, 2407–2414.
    [Google Scholar]
  38. Suarez, D. L., Senne, D. A., Banks, J., Brown, I. H., Essen, S. C., Lee, C. W., Manvell, R. J., Mathieu-Benson, C., Moreno, V. & other authors ( 2004; ). Recombination resulting in virulence shift in avian influenza outbreak, Chile. Emerg Infect Dis 10, 693–699.[CrossRef]
    [Google Scholar]
  39. Veits, J., Wiesner, D., Fuchs, W., Hoffmann, B., Granzow, H., Starick, E., Mundt, E., Schirrmeier, H., Mebatsion, T. & other authors ( 2006; ). Newcastle disease virus expressing H5 hemagglutinin gene protects chickens against Newcastle disease and avian influenza. Proc Natl Acad Sci U S A 103, 8197–8202.[CrossRef]
    [Google Scholar]
  40. Weber, S., Harder, T., Starick, E., Beer, M., Werner, O., Hoffmann, B., Mettenleiter, T. C. & Mundt, E. ( 2007; ). Molecular analysis of highly pathogenic avian influenza virus of subtype H5N1 isolated from wild birds and mammals in northern Germany. J Gen Virol 88, 554–558.[CrossRef]
    [Google Scholar]
  41. White, J., Matlin, K. & Helenius, A. ( 1981; ). Cell fusion by Semliki Forest, influenza, and vesicular stomatitis viruses. J Cell Biol 89, 674–679.[CrossRef]
    [Google Scholar]
  42. White, J., Kartenbeck, J. & Helenius, A. ( 1982; ). Membrane fusion activity of influenza virus. EMBO J 1, 217–222.
    [Google Scholar]
  43. Wood, G. W., McCauley, J. W., Bashiruddin, J. B. & Alexander, D. J. ( 1993; ). Deduced amino acid sequences at the haemagglutinin cleavage site of avian influenza A viruses of H5 and H7 subtypes. Arch Virol 130, 209–217.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.023887-0
Loading
/content/journal/jgv/10.1099/vir.0.023887-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error