1887

Abstract

As sexual transmission of human immunodeficiency virus-1 (HIV-1) occurs via the mucosa, an ideal HIV-1 vaccine should induce both mucosal and systemic immunity. We therefore sought to evaluate the induction of mucosal responses using a DNA prime–gp120 protein boost approach in which sequential nasal and parenteral protein administration was performed with two novel carbohydrate-based adjuvants. These adjuvants, Advax-M and Advax-P, were specifically designed for mucosal and systemic immune enhancement, respectively. Murine intranasal immunization with gp120/Advax-M adjuvant elicited gp120-specific IgA in serum and mucosal secretions that was markedly enhanced by DNA priming. Boosting of DNA-primed mice with gp120/Advax-M and gp120/Advax-P by sequential intranasal and intramuscular immunization, or vice versa, elicited persistent mucosal gp120-specific IgA, systemic IgG and memory T- and B-cell responses. Induction of homologous, but not heterologous, neutralizing activity was noted in the sera of all immunized groups. While confirmation of efficacy is required in challenge studies using non-human primates, these results suggest that the combination of DNA priming with sequential nasal and parenteral protein boosting, with appropriate mucosal and systemic adjuvants, could generate strong mucosal and systemic immunity and may block HIV-1 mucosal transmission and infection.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.023242-0
2011-01-01
2019-08-17
Loading full text...

Full text loading...

/deliver/fulltext/jgv/92/1/128.html?itemId=/content/journal/jgv/10.1099/vir.0.023242-0&mimeType=html&fmt=ahah

References

  1. Ahmed, R. K., Biberfeld, G. & Thorstensson, R. ( 2005; ). Innate immunity in experimental SIV infection and vaccination. Mol Immunol 42, 251–258.[CrossRef]
    [Google Scholar]
  2. Alving, C. R. & Rao, M. ( 2008; ). Lipid A and liposomes containing lipid A as antigens and adjuvants. Vaccine 26, 3036–3045.[CrossRef]
    [Google Scholar]
  3. Asahi-Ozaki, Y., Yoshikawa, T., Iwakura, Y., Suzuki, Y., Tamura, S., Kurata, T. & Sata, T. ( 2004; ). Secretory IgA antibodies provide cross-protection against infection with different strains of influenza B virus. J Med Virol 74, 328–335.[CrossRef]
    [Google Scholar]
  4. Barnett, S. W., Srivastava, I. K., Kan, E., Zhou, F., Goodsell, A., Cristillo, A. D., Ferrai, M. G., Weiss, D. E., Letvin, N. L. & other authors ( 2008; ). Protection of macaques against vaginal SHIV challenge by systemic or mucosal and systemic vaccinations with HIV-envelope. AIDS 22, 339–348.[CrossRef]
    [Google Scholar]
  5. Barone, F., Patel, P., Sanderson, J. D. & Spencer, J. ( 2009; ). Gut-associated lymphoid tissue contains the molecular machinery to support T-cell-dependent and T-cell-independent class switch recombination. Mucosal Immunol 2, 495–503.[CrossRef]
    [Google Scholar]
  6. Belyakov, I. M., Kuznetsov, V. A., Kelsall, B., Klinman, D., Moniuszko, M., Lemon, M., Markham, P. D., Pal, R., Clements, J. D. & other authors ( 2006; ). Impact of vaccine-induced mucosal high-avidity CD8+ CTLs in delay of AIDS viral dissemination from mucosa. Blood 107, 3258–3264.[CrossRef]
    [Google Scholar]
  7. Bertley, F. M., Kozlowski, P. A., Wang, S. W., Chappelle, J., Patel, J., Sonuyi, O., Mazzara, G., Montefiori, D., Carville, A. & other authors ( 2004; ). Control of simian/human immunodeficiency virus viremia and disease progression after IL-2-augmented DNA-modified vaccinia virus Ankara nasal vaccination in nonhuman primates. J Immunol 172, 3745–3757.[CrossRef]
    [Google Scholar]
  8. Bradac, J. & Dieffenbach, C. W. ( 2009; ). HIV vaccine development: lessons from the past, informing the future. IDrugs 12, 435–439.
    [Google Scholar]
  9. Bradney, C. P., Sempowski, G. D., Liao, H. X., Haynes, B. F. & Staats, H. F. ( 2002; ). Cytokines as adjuvants for the induction of anti-human immunodeficiency virus peptide immunoglobulin G (IgG) and IgA antibodies in serum and mucosal secretions after nasal immunization. J Virol 76, 517–524.[CrossRef]
    [Google Scholar]
  10. Brenchley, J. M., Schacker, T. W., Ruff, L. E., Price, D. A., Taylor, J. H., Beilman, G. J., Nguyen, P. L., Khoruts, A., Larson, M. & other authors ( 2004; ). CD4+ T cell depletion during all stages of HIV disease occurs predominantly in the gastrointestinal tract. J Exp Med 200, 749–759.[CrossRef]
    [Google Scholar]
  11. Carroll, M. C. ( 1998; ). The role of complement and complement receptors in induction and regulation of immunity. Annu Rev Immunol 16, 545–568.[CrossRef]
    [Google Scholar]
  12. Chase, A. J., Sedaghat, A. R., German, J. R., Gama, L., Zink, M. C., Clements, J. E. & Siliciano, R. F. ( 2007; ). Severe depletion of CD4+ CD25+ regulatory T cells from the intestinal lamina propria but not peripheral blood or lymph nodes during acute simian immunodeficiency virus infection. J Virol 81, 12748–12757.[CrossRef]
    [Google Scholar]
  13. Connell, T. D. ( 2007; ). Cholera toxin, LT-I, LT-IIa and LT-IIb: the critical role of ganglioside binding in immunomodulation by type I and type II heat-labile enterotoxins. Expert Rev Vaccines 6, 821–834.[CrossRef]
    [Google Scholar]
  14. Cooper, P. D. ( 1995; ). Vaccine adjuvants based on gamma inulin. Pharm Biotechnol 6, 559–580.
    [Google Scholar]
  15. Cooper, P. D., McComb, C. & Steele, E. J. ( 1991; ). The adjuvanticity of Algammulin, a new vaccine adjuvant. Vaccine 9, 408–415.[CrossRef]
    [Google Scholar]
  16. Couch, R. B. ( 2004; ). Nasal vaccination, Escherichia coli enterotoxin, and Bell's palsy. N Engl J Med 350, 860–861.[CrossRef]
    [Google Scholar]
  17. Cristillo, A. D., Wang, S., Caskey, M. S., Unangst, T., Hocker, L., He, L., Hudacik, L., Whitney, S., Keen, T. & other authors ( 2006; ). Preclinical evaluation of cellular immune responses elicited by a polyvalent DNA prime/protein boost HIV-1 vaccine. Virology 346, 151–168.[CrossRef]
    [Google Scholar]
  18. Cristillo, A. D., Weiss, D., Hudacik, L., Restrepo, S., Galmin, L., Suschak, J., Draghia-Akli, R., Markham, P. & Pal, R. ( 2008a; ). Persistent antibody and T cell responses induced by HIV-1 DNA vaccine delivered by electroporation. Biochem Biophys Res Commun 366, 29–35.[CrossRef]
    [Google Scholar]
  19. Cristillo, A. D., Galmin, L., Restrepo, S., Hudacik, L., Suschak, J., Lewis, B., Draghia-Akli, R., Aziz, N., Weiss, D. & other authors ( 2008b; ). HIV-1 Env vaccine comprised of electroporated DNA and protein co-administered with Talabostat. Biochem Biophys Res Commun 370, 22–26.[CrossRef]
    [Google Scholar]
  20. Denton, P. W. & Garcia, J. V. ( 2009; ). Novel humanized murine models for HIV research. Curr HIV/AIDS Rep 6, 13–19.[CrossRef]
    [Google Scholar]
  21. Devito, C., Broliden, K., Kaul, R., Svensson, L., Johansen, K., Kiama, P., Kimani, J., Lopalco, L., Piconi, S. & other authors ( 2000; ). Mucosal and plasma IgA from HIV-1-exposed uninfected individuals inhibit HIV-1 transcytosis across human epithelial cells. J Immunol 165, 5170–5176.[CrossRef]
    [Google Scholar]
  22. Devito, C., Hinkula, J., Kaul, R., Kimani, J., Kiama, P., Lopalco, L., Barass, C., Piconi, S., Trabattoni, D. & other authors ( 2002; ). Cross-clade HIV-1-specific neutralizing IgA in mucosal and systemic compartments of HIV-1-exposed, persistently seronegative subjects. J Acquir Immune Defic Syndr 30, 413–420.[CrossRef]
    [Google Scholar]
  23. Finerty, S., Stokes, C. R., Gruffydd-Jones, T. J., Hillman, T. J., Barr, F. J. & Harbour, D. A. ( 2001; ). Targeted lymph node immunization can protect cats from a mucosal challenge with feline immunodeficiency virus. Vaccine 20, 49–58.[CrossRef]
    [Google Scholar]
  24. Fujii, S., Shimizu, K., Hemmi, H., Fukui, M., Bonito, A. J., Chen, G., Franck, R. W., Tsuji, M. & Steinman, R. M. ( 2006; ). Glycolipid α-C-galactosylceramide is a distinct inducer of dendritic cell function during innate and adaptive immune responses of mice. Proc Natl Acad Sci U S A 103, 11252–11257.[CrossRef]
    [Google Scholar]
  25. Glenn, G. M., Flyer, D. C., Ellingsworth, L. R., Frech, S. A., Frerichs, D. M., Seid, R. C. & Yu, J. ( 2007; ). Transcutaneous immunization with heat-labile enterotoxin: development of a needle-free vaccine patch. Expert Rev Vaccines 6, 809–819.[CrossRef]
    [Google Scholar]
  26. Goodsell, A., Zhou, F., Gupta, S., Singh, M., Malyala, P., Kazzaz, J., Greer, C., Legg, H., Tang, T. & other authors ( 2008; ). β7-Integrin-independent enhancement of mucosal and systemic anti-HIV antibody responses following combined mucosal and systemic gene delivery. Immunology 123, 378–389.[CrossRef]
    [Google Scholar]
  27. Guan, Y., Sajadi, M. M., Kamin-Lewis, R., Fouts, T. R., Dimitrov, A., Zhang, Z., Redfield, R. R., DeVico, A. L., Gallo, R. C. & Lewis, G. K. ( 2009; ). Discordant memory B cell and circulating anti-Env antibody responses in HIV-1 infection. Proc Natl Acad Sci U S A 106, 3952–3957.[CrossRef]
    [Google Scholar]
  28. Hansen, S. G., Vieville, C., Whizin, N., Coyne-Johnson, L., Siess, D. C., Drummond, D. D., Legasse, A. W., Axthelm, M. K., Oswald, K. & other authors ( 2009; ). Effector memory T cell responses are associated with protection of rhesus monkeys from mucosal simian immunodeficiency virus challenge. Nat Med 15, 293–299.[CrossRef]
    [Google Scholar]
  29. Hardenberg, G., Planelles, L., Schwarte, C. M., van Bostelen, L., Le Huong, T., Hahne, M. & Medema, J. P. ( 2007; ). Specific TLR ligands regulate APRIL secretion by dendritic cells in a PKR-dependent manner. Eur J Immunol 37, 2900–2911.[CrossRef]
    [Google Scholar]
  30. He, B., Xu, W., Santini, P. A., Polydorides, A. D., Chiu, A., Estrella, J., Shan, M., Chadburn, A., Villanacci, V. & other authors ( 2007; ). Intestinal bacteria trigger T cell-independent immunoglobulin A2 class switching by inducing epithelial-cell secretion of the cytokine APRIL. Immunity 26, 812–826.[CrossRef]
    [Google Scholar]
  31. Hinkula, J., Hagbom, M., Wahren, B. & Schroder, U. ( 2008; ). Safety and immunogenicity, after nasal application of HIV-1 DNA gagp37 plasmid vaccine in young mice. Vaccine 26, 5101–5106.[CrossRef]
    [Google Scholar]
  32. Holmgren, J. & Czerkinsky, C. ( 2005; ). Mucosal immunity and vaccines. Nat Med 11, S45–S53.[CrossRef]
    [Google Scholar]
  33. Huang, X., Xu, J., Qiu, C., Ren, L., Liu, L., Wan, Y., Zhang, N., Peng, H. & Shao, Y. ( 2007; ). Mucosal priming with PEI/DNA complex and systemic boosting with recombinant TianTan vaccinia stimulate vigorous mucosal and systemic immune responses. Vaccine 25, 2620–2629.[CrossRef]
    [Google Scholar]
  34. Kamijuku, H., Nagata, Y., Jiang, X., Ichinohe, T., Tashiro, T., Mori, K., Taniguchi, M., Hase, K., Ohno, H. & other authors ( 2008; ). Mechanism of NKT cell activation by intranasal coadministration of alpha-galactosylceramide, which can induce cross-protection against influenza viruses. Mucosal Immunol 1, 208–218.[CrossRef]
    [Google Scholar]
  35. Kaminski, R. W. & VanCott, T. C . ( 1999; ). Collection and processing of mucosal secretions from mice. Methods Mol Med 17, 329–339.
    [Google Scholar]
  36. Kantele, A., Kantele, J. M., Savilahti, E., Westerholm, M., Arvilommi, H., Lazarovits, A., Butcher, E. C. & Makela, P. H. ( 1997; ). Homing potentials of circulating lymphocytes in humans depend on the site of activation: oral, but not parenteral, typhoid vaccination induces circulating antibody-secreting cells that all bear homing receptors directing them to the gut. J Immunol 158, 574–579.
    [Google Scholar]
  37. Kantele, A., Westerholm, M., Kantele, J. M., Makela, P. H. & Savilahti, E. ( 1999; ). Homing potentials of circulating antibody-secreting cells after administration of oral or parenteral protein or polysaccharide vaccine in humans. Vaccine 17, 229–236.[CrossRef]
    [Google Scholar]
  38. Kennedy, J. S., Co, M., Green, S., Longtine, K., Longtine, J., O'Neill, M. A., Adams, J. P., Rothman, A. L., Yu, Q. & other authors ( 2008; ). The safety and tolerability of an HIV-1 DNA prime–protein boost vaccine (DP6–001) in healthy adult volunteers. Vaccine 26, 4420–4424.[CrossRef]
    [Google Scholar]
  39. Kim, P. H., Eckmann, L., Lee, W. J., Han, W. & Kagnoff, M. F. ( 1998; ). Cholera toxin and cholera toxin B subunit induce IgA switching through the action of TGF-β1. J Immunol 160, 1198–1203.
    [Google Scholar]
  40. Kobayashi, E., Motoki, K., Uchida, T., Fukushima, H. & Koezuka, Y. ( 1995; ). KRN7000, a novel immunomodulator, and its antitumor activities. Oncol Res 7, 529–534.
    [Google Scholar]
  41. Koopman, G., Bogers, W. M., van Gils, M., Koornstra, W., Barnett, S., Morein, B., Lehner, T. & Heeney, J. L. ( 2007; ). Comparison of intranasal with targeted lymph node immunization using PR8-Flu ISCOM adjuvanted HIV antigens in macaques. J Med Virol 79, 474–482.[CrossRef]
    [Google Scholar]
  42. Kunisawa, J., Fukuyama, S. & Kiyono, H. ( 2005; ). Mucosa-associated lymphoid tissues in the aerodigestive tract: their shared and divergent traits and their importance to the orchestration of the mucosal immune system. Curr Mol Med 5, 557–572.[CrossRef]
    [Google Scholar]
  43. Lai, L., Vodros, D., Kozlowski, P. A., Montefiori, D. C., Wilson, R. L., Akerstrom, V. L., Chennareddi, L., Yu, T., Kannanganat, S. & other authors ( 2007; ). GM-CSF DNA: an adjuvant for higher avidity IgG, rectal IgA, and increased protection against the acute phase of a SHIV-89.6P challenge by a DNA/MVA immunodeficiency virus vaccine. Virology 369, 153–167.[CrossRef]
    [Google Scholar]
  44. Lehner, T., Wang, Y., Ping, L., Bergmeier, L., Mitchell, E., Cranage, M., Hall, G., Dennis, M., Cook, N. & other authors ( 1999; ). The effect of route of immunization on mucosal immunity and protection. J Infect Dis 179, S489–S492.[CrossRef]
    [Google Scholar]
  45. Lobigs, M., Pavy, M., Hall, R. A., Lobigs, P., Cooper, P., Komiya, T., Toriniwa, H. & Petrovsky, N. ( 2010; ). An inactivated Vero cell-grown Japanese encephalitis vaccine formulated with Advax, a novel inulin-based adjuvant, induces protective neutralizing antibody against homologous and heterologous flaviviruses. J Gen Virol 91, 1407–1417.[CrossRef]
    [Google Scholar]
  46. Manrique, M., Micewicz, E., Kozlowski, P. A., Wang, S. W., Aurora, D., Wilson, R. L., Ghebremichael, M., Mazzara, G., Montefiori, D. & other authors ( 2008; ). DNA-MVA vaccine protection after X4 SHIV challenge in macaques correlates with day-of-challenge antiviral CD4+ cell-mediated immunity levels and postchallenge preservation of CD4+ T cell memory. AIDS Res Hum Retroviruses 24, 505–519.[CrossRef]
    [Google Scholar]
  47. Manrique, M., Kozlowski, P. A., Wang, S. W., Wilson, R. L., Micewicz, E., Montefiori, D. C., Mansfield, K. G., Carville, A. & Aldovini, A. ( 2009; ). Nasal DNA-MVA SIV vaccination provides more significant protection from progression to AIDS than a similar intramuscular vaccination. Mucosal Immunol 2, 536–550.[CrossRef]
    [Google Scholar]
  48. Matyas, G. R., Wieczorek, L., Beck, Z., Ochsenbauer-Jambor, C., Kappes, J. C., Michael, N. L., Polonis, V. R. & Alving, C. R. ( 2009; ). Neutralizing antibodies induced by liposomal HIV-1 glycoprotein 41 peptide simultaneously bind to both the 2F5 or 4E10 epitope and lipid epitopes. AIDS 23, 2069–2077.[CrossRef]
    [Google Scholar]
  49. Mazzoli, S., Lopalco, L., Salvi, A., Trabattoni, D., Lo Caputo, S., Semplici, F., Biasin, M., Bl, C., Cosma, A. & other authors ( 1999; ). Human immunodeficiency virus (HIV)-specific IgA and HIV neutralizing activity in the serum of exposed seronegative partners of HIV-seropositive persons. J Infect Dis 180, 871–875.[CrossRef]
    [Google Scholar]
  50. Meckelein, B., Externest, D., Schmidt, M. A. & Frey, A. ( 2003; ). Contribution of serum immunoglobulin transudate to the antibody immune status of murine intestinal secretions: influence of different sampling procedures. Clin Diagn Lab Immunol 10, 831–834.
    [Google Scholar]
  51. Ngo-Giang-Huong, N., Candotti, D., Goubar, A., Autran, B., Maynart, M., Sicard, D., Clauvel, J. P., Agut, H., Costagliola, D. & Rouzioux, C. ( 2001; ). HIV type 1-specific IgG2 antibodies: markers of helper T cell type 1 response and prognostic marker of long-term nonprogression. AIDS Res Hum Retroviruses 17, 1435–1446.[CrossRef]
    [Google Scholar]
  52. Ozawa, Y., Suda, T., Nagata, T., Hashimoto, D., Nakamura, Y., Enomoto, N., Inui, N., Koide, Y., Nakamura, H. & Chida, K. ( 2009; ). Mucosal vaccine using CTL epitope-pulsed dendritic cell confers protection for intracellular pathogen. Am J Respir Cell Mol Biol 41, 440–448.[CrossRef]
    [Google Scholar]
  53. Pal, R., Venzon, D., Letvin, N. L., Santra, S., Montefiori, D. C., Miller, N. R., Tryniszewska, E., Lewis, M. G., VanCott, T. C. & other authors ( 2002; ). ALVAC-SIV-gag-pol-env-based vaccination and macaque major histocompatibility complex class I (A*01) delay simian immunodeficiency virus SIVmac-induced immunodeficiency. J Virol 76, 292–302.[CrossRef]
    [Google Scholar]
  54. Pal, R., Taylor, B., Foulke, J. S., Woodward, R., Merges, M., Praschunus, R., Gibson, A. & Reitz, M. ( 2003; ). Characterization of a simian human immunodeficiency virus encoding the envelope gene from the CCR5-tropic HIV-1 Ba-L. J Acquir Immune Defic Syndr 33, 300–307.[CrossRef]
    [Google Scholar]
  55. Pal, R., Wang, S., Kalyanaraman, V. S., Nair, B. C., Whitney, S., Keen, T., Hocker, L., Hudacik, L., Rose, N. & other authors ( 2005; ). Polyvalent DNA prime and envelope protein boost HIV-1 vaccine elicits humoral and cellular responses and controls plasma viremia in rhesus macaques following rectal challenge with an R5 SHIV isolate. J Med Primatol 34, 226–236.[CrossRef]
    [Google Scholar]
  56. Pal, R., Kalyanaraman, V. S., Nair, B. C., Whitney, S., Keen, T., Hocker, L., Hudacik, L., Rose, N., Mboudjeka, I. & other authors ( 2006; ). Immunization of rhesus macaques with a polyvalent DNA prime/protein boost human immunodeficiency virus type 1 vaccine elicits protective antibody response against simian human immunodeficiency virus of R5 phenotype. Virology 348, 341–353.[CrossRef]
    [Google Scholar]
  57. Pandrea, I. V., Gautam, R., Ribeiro, R. M., Brenchley, J. M., Butler, I. F., Pattison, M., Rasmussen, T., Marx, P. A., Silvestri, G. & other authors ( 2007; ). Acute loss of intestinal CD4+ T cells is not predictive of simian immunodeficiency virus virulence. J Immunol 179, 3035–3046.[CrossRef]
    [Google Scholar]
  58. Petrovsky, N. ( 2006; ). Novel human polysaccharide adjuvants with dual Th1 and Th2 potentiating activity. Vaccine 24, S2-26–S2-29.
    [Google Scholar]
  59. Petrovsky, N. ( 2008; ). Freeing vaccine adjuvants from dangerous immunological dogma. Expert Rev Vaccines 7, 7–10.[CrossRef]
    [Google Scholar]
  60. Planque, S., Salas, M., Mitsuda, Y., Sienczyk, M., Escobar, M. A., Mooney, J. P., Morris, M. K., Nishiyama, Y., Ghosh, D. & other authors ( 2010; ). Neutralization of genetically diverse HIV-1 strains by IgA antibodies to the gp120–CD4-binding site from long-term survivors of HIV infection. AIDS 24, 875–884.[CrossRef]
    [Google Scholar]
  61. Qadri, F., Makela, P. H., Holmgren, J., Albert, M. J., Mannoor, K., Kantele, A., Saha, D., Salam, M. A. & Kantele, J. M. ( 1998; ). Enteric infections in an endemic area induce a circulating antibody-secreting cell response with homing potentials to both mucosal and systemic tissues. J Infect Dis 177, 1594–1599.[CrossRef]
    [Google Scholar]
  62. Quiding-Järbrink, M., Nordström, I., Granström, G., Kilander, A., Jertborn, M., Butcher, E. C., Lazarovits, A. I., Holmgren, J. & Czerkinsky, C. ( 1997; ). Differential expression of tissue-specific adhesion molecules on human circulating antibody-forming cells after systemic, enteric, and nasal immunizations. A molecular basis for the compartmentalization of effector B cell responses. J Clin Invest 99, 1281–1286.[CrossRef]
    [Google Scholar]
  63. Raska, M., Moldoveanu, Z., Novak, J., Hel, Z., Novak, L., Bozja, J., Compans, R. W., Yang, C. & Mestecky, J. ( 2008; ). Delivery of DNA HIV-1 vaccine to the liver induces high and long-lasting humoral immune responses. Vaccine 26, 1541–1551.[CrossRef]
    [Google Scholar]
  64. Rerks-Ngarm, S., Pitisuttithum, P., Nitayaphan, S., Kaewkungwal, J., Chiu, J., Paris, R., Premsri, N., Namwat, C., de Souza, M. & other authors ( 2009; ). Vaccination with ALVAC and AIDSVAX to prevent HIV-1 infection in Thailand. N Engl J Med 361, 2209–2220.[CrossRef]
    [Google Scholar]
  65. Robb, M. L. ( 2008; ). Failure of the Merck HIV vaccine: an uncertain step forward. Lancet 372, 1857–1858.[CrossRef]
    [Google Scholar]
  66. Sasaki, S., Sumino, K., Hamajima, K., Fukushima, J., Ishii, N., Kawamoto, S., Mohri, H., Kensil, C. R. & Okuda, K. ( 1998; ). Induction of systemic and mucosal immune responses to human immunodeficiency virus type 1 by a DNA vaccine formulated with QS-21 saponin adjuvant via intramuscular and intranasal routes. J Virol 72, 4931–4939.
    [Google Scholar]
  67. Scharf, O., Golding, H., King, L. R., Eller, N., Frazier, D., Golding, B. & Scott, D. E. ( 2001; ). Immunoglobulin G3 from polyclonal human immunodeficiency virus (HIV) immune globulin is more potent than other subclasses in neutralizing HIV type 1. J Virol 75, 6558–6565.[CrossRef]
    [Google Scholar]
  68. Schoenly, K. A. & Weiner, D. B. ( 2008; ). Human immunodeficiency virus type 1 vaccine development: recent advances in the cytotoxic T-lymphocyte platform “spotty business”. J Virol 82, 3166–3180.[CrossRef]
    [Google Scholar]
  69. Shang, L., Fukata, M., Thirunarayanan, N., Martin, A. P., Arnaboldi, P., Maussang, D., Berin, C., Unkeless, J. C., Mayer, L. & other authors ( 2008; ). Toll-like receptor signaling in small intestinal epithelium promotes B-cell recruitment and IgA production in lamina propria. Gastroenterology 135, 529–538.[CrossRef]
    [Google Scholar]
  70. Shattock, R. J., Haynes, B. F., Pulendran, B., Flores, J. & Esparza, J. ( 2008; ). Improving defences at the portal of HIV entry: mucosal and innate immunity. PLoS Med 5, e81.[CrossRef]
    [Google Scholar]
  71. Silva, D. G., Cooper, P. D. & Petrovsky, N. ( 2004; ). Inulin-derived adjuvants efficiently promote both Th1 and Th2 immune responses. Immunol Cell Biol 82, 611–616.[CrossRef]
    [Google Scholar]
  72. Slifka, M. K. & Ahmed, R. ( 1996; ). Limiting dilution analysis of virus-specific memory B cells by an ELISPOT assay. J Immunol Methods 199, 37–46.[CrossRef]
    [Google Scholar]
  73. Srivastava, I., Goodsell, A., Zhou, F., Sun, Y., Burke, B., Barnett, S. & Vajdy, M. ( 2008; ). Dynamics of acute and memory mucosal and systemic immune responses against HIV-1 envelope following immunizations through single or combinations of mucosal and systemic routes. Vaccine 26, 2796–2806.[CrossRef]
    [Google Scholar]
  74. Staats, H. F., Bradney, C. P., Gwinn, W. M., Jackson, S. S., Sempowski, G. D., Liao, H. X., Letvin, N. L. & Haynes, B. F. ( 2001; ). Cytokine requirements for induction of systemic and mucosal CTL after nasal immunization. J Immunol 167, 5386–5394.[CrossRef]
    [Google Scholar]
  75. Stevceva, L. & Ferrari, M. G. ( 2005; ). Mucosal adjuvants. Curr Pharm Des 11, 801–811.[CrossRef]
    [Google Scholar]
  76. Tamura, S., Samegai, Y., Kurata, H., Nagamine, T., Aizawa, C. & Kurata, T. ( 1988; ). Protection against influenza virus infection by vaccine inoculated intranasally with cholera toxin B subunit. Vaccine 6, 409–413.[CrossRef]
    [Google Scholar]
  77. Traggiai, E., Becker, S., Subbarao, K., Kolesnikova, L., Uematsu, Y., Gismondo, M. R., Murphy, B. R., Rappuoli, R. & Lanzavecchia, A. ( 2004; ). An efficient method to make human monoclonal antibodies from memory B cells: potent neutralization of SARS coronavirus. Nat Med 10, 871–875.[CrossRef]
    [Google Scholar]
  78. Vajdy, M. ( 2006; ). Current efforts on generation of optimal immune responses against HIV through mucosal immunisations. Drugs R D 7, 267–288.[CrossRef]
    [Google Scholar]
  79. Vajdy, M. & Singh, M. ( 2005; ). The role of adjuvants in the development of mucosal vaccines. Expert Opin Biol Ther 5, 953–965.[CrossRef]
    [Google Scholar]
  80. Vajdy, M. & Singh, M. ( 2006; ). Intranasal delivery of vaccines against HIV. Expert Opin Drug Deliv 3, 247–259.[CrossRef]
    [Google Scholar]
  81. van Ginkel, F. W., Jackson, R. J., Yuki, Y. & McGhee, J. R. ( 2000; ). Cutting edge: the mucosal adjuvant cholera toxin redirects vaccine proteins into olfactory tissues. J Immunol 165, 4778–4782.[CrossRef]
    [Google Scholar]
  82. van Ginkel, F. W., Jackson, R. J., Yoshino, N., Hagiwara, Y., Metzger, D. J., Connell, T. D., Vu, H. L., Martin, M., Fujihashi, K. & McGhee, J. R. ( 2005; ). Enterotoxin-based mucosal adjuvants alter antigen trafficking and induce inflammatory responses in the nasal tract. Infect Immun 73, 6892–6902.[CrossRef]
    [Google Scholar]
  83. Veldt, B. J., van der Vliet, H. J., von Blomberg, B. M., van Vlierberghe, H., Gerken, G., Nishi, N., Hayashi, K., Scheper, R. J., de Knegt, R. J. & other authors ( 2007; ). Randomized placebo controlled phase I/II trial of α-galactosylceramide for the treatment of chronic hepatitis C. J Hepatol 47, 356–365.
    [Google Scholar]
  84. Wang, S. W., Bertley, F. M., Kozlowski, P. A., Herrmann, L., Manson, K., Mazzara, G., Piatak, M., Johnson, R. P., Carville, A. & other authors ( 2004; ). An SHIV DNA/MVA rectal vaccination in macaques provides systemic and mucosal virus-specific responses and protection against AIDS. AIDS Res Hum Retroviruses 20, 846–859.[CrossRef]
    [Google Scholar]
  85. Wang, S., Pal, R., Mascola, J. R., Chou, T. H., Mboudjeka, I., Shen, S., Liu, Q., Whitney, S., Keen, T. & other authors ( 2006; ). Polyvalent HIV-1 Env vaccine formulations delivered by the DNA priming plus protein boosting approach are effective in generating neutralizing antibodies against primary human immunodeficiency virus type 1 isolates from subtypes A, B, C, D and E. Virology 350, 34–47.[CrossRef]
    [Google Scholar]
  86. Wang, S., Kennedy, J. S., West, K., Montefiori, D. C., Coley, S., Lawrence, J., Shen, S., Green, S., Rothman, A. L. & other authors ( 2008; ). Cross-subtype antibody and cellular immune responses induced by a polyvalent DNA prime-protein boost HIV-1 vaccine in healthy human volunteers. Vaccine 26, 3947–3957.[CrossRef]
    [Google Scholar]
  87. Watanabe, I., Hagiwara, Y., Kadowaki, S. E., Yoshikawa, T., Komase, K., Aizawa, C., Kiyono, H., Takeda, Y., McGhee, J. R. & other authors ( 2002; ). Characterization of protective immune responses induced by nasal influenza vaccine containing mutant cholera toxin as a safe adjuvant (CT112K). Vaccine 20, 3443–3455.[CrossRef]
    [Google Scholar]
  88. Watkins, D. I., Burton, D. R., Kallas, E. G., Moore, J. P. & Koff, W. C. ( 2008; ). Nonhuman primate models and the failure of the Merck HIV-1 vaccine in humans. Nat Med 14, 617–621.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.023242-0
Loading
/content/journal/jgv/10.1099/vir.0.023242-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error