1887

Abstract

Due to high genome plasticity, the evolutionary fate and geographical history of picornaviruses is hard to follow. Here, we determined the complete coding sequences of eight human parechoviruses (HPeV) of types 1, 5 and 6 directly from clinical samples from Brazil. The capsid genes of these strains were not remarkably different from European, North American and Japanese HPeV. Full genome analysis revealed frequent intertypic recombination in the non-structural genome region. In addition, evidence of recombination between viruses of the same type in the capsid-encoding genome region among HPeV1 and HPeV4 was obtained. Bayesian phylogenetic analysis indicated that strains without evidence of recombination with each other in any genome region were separated by no more than 35 years of circulation. Interestingly, in the 3C gene, all Brazilian parechoviruses grouped together regardless of serotype. The most recent common ancestor of these strains dated back 108 years, suggesting long-term endemicity of this particular P3 genome lineage in South America. Our results support the idea that picornavirus replicative genes acquire capsid proteins introduced by new strains. Under certain epidemiological conditions, replicative genes may be maintained in circumscript geographical regions.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.022525-0
2011-03-01
2019-12-05
Loading full text...

Full text loading...

/deliver/fulltext/jgv/92/3/564.html?itemId=/content/journal/jgv/10.1099/vir.0.022525-0&mimeType=html&fmt=ahah

References

  1. Abed, Y. & Boivin, G. ( 2005; ). Molecular characterization of a Canadian human parechovirus (HPeV)-3 isolate and its relationship to other HPeVs. J Med Virol 77, 566–570.[CrossRef]
    [Google Scholar]
  2. Al-Sunaidi, M., Williams, C. H., Hughes, P. J., Schnurr, D. P. & Stanway, G. ( 2007; ). Analysis of a new human parechovirus allows the definition of parechovirus types and the identification of RNA structural domains. J Virol 81, 1013–1021.[CrossRef]
    [Google Scholar]
  3. Baumgarte, S., de Souza Luna, L. K., Grywna, K., Panning, M., Drexler, J. F., Karsten, C., Huppertz, H. I. & Drosten, C. ( 2008; ). Prevalence, types, and RNA concentrations of human parechoviruses, including a sixth parechovirus type, in stool samples from patients with acute enteritis. J Clin Microbiol 46, 242–248.[CrossRef]
    [Google Scholar]
  4. Benschop, K. S., Schinkel, J., Minnaar, R. P., Pajkrt, D., Spanjerberg, L., Kraakman, H. C., Berkhout, B., Zaaijer, H. L., Beld, M. G. & Wolthers, K. C. ( 2006; ). Human parechovirus infections in Dutch children and the association between serotype and disease severity. Clin Infect Dis 42, 204–210.[CrossRef]
    [Google Scholar]
  5. Benschop, K., Thomas, X., Serpenti, C., Molenkamp, R. & Wolthers, K. ( 2008a; ). High prevalence of human parechovirus (HPeV) genotypes in the Amsterdam region and identification of specific HPeV variants by direct genotyping of stool samples. J Clin Microbiol 46, 3965–3970.[CrossRef]
    [Google Scholar]
  6. Benschop, K. S., Williams, C. H., Wolthers, K. C., Stanway, G. & Simmonds, P. ( 2008b; ). Widespread recombination within human parechoviruses: analysis of temporal dynamics and constraints. J Gen Virol 89, 1030–1035.[CrossRef]
    [Google Scholar]
  7. Benschop, K. S., de Vries, M., Minnaar, R. P., Stanway, G., van der Hoek, L., Wolthers, K. C. & Simmonds, P. ( 2010; ). Comprehensive full-length sequence analyses of human parechoviruses: diversity and recombination. J Gen Virol 91, 145–154.[CrossRef]
    [Google Scholar]
  8. Calvert, J., Chieochansin, T., Benschop, K. S., McWilliam Leitch, E. C., Drexler, J. F., Grywna, K., da Costa Ribeiro, H., Jr, Drosten, C., Harvala, H. & other authors ( 2010; ). Recombination dynamics of human parechoviruses: investigation of type-specific differences in frequency and epidemiological correlates. J Gen Virol 91, 1229–1238.[CrossRef]
    [Google Scholar]
  9. de Souza Luna, L. K., Baumgarte, S., Grywna, K., Panning, M., Drexler, J. F. & Drosten, C. ( 2008; ). Identification of a contemporary human parechovirus type 1 by VIDISCA and characterisation of its full genome. Virol J 5, 26.[CrossRef]
    [Google Scholar]
  10. de Vries, M., Pyrc, K., Berkhout, R., Vermeulen-Oost, W., Dijkman, R., Jebbink, M. F., Bruisten, S., Berkhout, B. & van der Hoek, L. ( 2008; ). Human parechovirus type 1, 3, 4, 5, and 6 detection in picornavirus cultures. J Clin Microbiol 46, 759–762.[CrossRef]
    [Google Scholar]
  11. Drexler, J. F., Luna, L. K., Stöcker, A., Almeida, P. S., Ribeiro, T. C., Petersen, N., Herzog, P., Pedroso, C., Huppertz, H. I. & other authors ( 2008; ). Circulation of 3 lineages of a novel Saffold cardiovirus in humans. Emerg Infect Dis 14, 1398–1405.[CrossRef]
    [Google Scholar]
  12. Drexler, J. F., Grywna, K., Stöcker, A., Almeida, P. S., Medrado-Ribeiro, T. C., Eschbach-Bludau, M., Petersen, N., da Costa-Ribeiro-Jr, H. & Drosten, C. ( 2009; ). Novel human parechovirus from Brazil. Emerg Infect Dis 15, 310–313.[CrossRef]
    [Google Scholar]
  13. Drummond, A. J. & Rambaut, A. ( 2007; ). beast: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7, 214.[CrossRef]
    [Google Scholar]
  14. Faria, N. R., de Vries, M., van Hemert, F. J., Benschop, K. & van der Hoek, L. ( 2009; ). Rooting human parechovirus evolution in time. BMC Evol Biol 9, 164.[CrossRef]
    [Google Scholar]
  15. Gercel, C., Mahan, K. B. & Hamparian, V. V. ( 1985; ). Preliminary characterization of a persistent infection of HeLa cells with human rhinovirus type 2. J Gen Virol 66, 131–139.[CrossRef]
    [Google Scholar]
  16. Ghazi, F., Hughes, P. J., Hyypiä, T. & Stanway, G. ( 1998; ). Molecular analysis of human parechovirus type 2 (formerly echovirus 23). J Gen Virol 79, 2641–2650.
    [Google Scholar]
  17. Hall, T. A. ( 1999; ). bioedit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41, 95–98.
    [Google Scholar]
  18. Harvala, H., Robertson, I., McWilliam Leitch, E. C., Benschop, K., Wolthers, K. C., Templeton, K. & Simmonds, P. ( 2008; ). Epidemiology and clinical associations of human parechovirus respiratory infections. J Clin Microbiol 46, 3446–3453.[CrossRef]
    [Google Scholar]
  19. Hyypiä, T., Horsnell, C., Maaronen, M., Khan, M., Kalkkinen, N., Auvinen, P., Kinnunen, L. & Stanway, G. ( 1992; ). A distinct picornavirus group identified by sequence analysis. Proc Natl Acad Sci U S A 89, 8847–8851.[CrossRef]
    [Google Scholar]
  20. Ito, M., Yamashita, T., Tsuzuki, H., Takeda, N. & Sakae, K. ( 2004; ). Isolation and identification of a novel human parechovirus. J Gen Virol 85, 391–398.[CrossRef]
    [Google Scholar]
  21. Johnston, R. E., Wan, K. & Bose, H. R. ( 1974; ). Homologous interference induced by Sindbis virus. J Virol 14, 1076–1082.
    [Google Scholar]
  22. Joki-Korpela, P. & Hyypiä, T. ( 1998; ). Diagnosis and epidemiology of echovirus 22 infections. Clin Infect Dis 27, 129–136.[CrossRef]
    [Google Scholar]
  23. Kim Pham, N. T., Trinh, Q. D., Takanashi, S., Abeysekera, C., Abeygunawardene, A., Shimizu, H., Khamrin, P., Okitsu, S., Mizuguchi, M. & Ushijima, H. ( 2010; ). Novel human parechovirus, Sri Lanka. Emerg Infect Dis 16, 130–132.[CrossRef]
    [Google Scholar]
  24. Leitch, E. C., Harvala, H., Robertson, I., Ubillos, I., Templeton, K. & Simmonds, P. ( 2009; ). Direct identification of human enterovirus serotypes in cerebrospinal fluid by amplification and sequencing of the VP1 region. J Clin Virol 44, 119–124.[CrossRef]
    [Google Scholar]
  25. Li, L., Victoria, J., Kapoor, A., Naeem, A., Shaukat, S., Sharif, S., Alam, M. M., Angez, M., Zaidi, S. Z. & Delwart, E. ( 2009; ). Genomic characterization of novel human parechovirus type. Emerg Infect Dis 15, 288–291.[CrossRef]
    [Google Scholar]
  26. Lole, K. S., Bollinger, R. C., Paranjape, R. S., Gadkari, D., Kulkarni, S. S., Novak, N. G., Ingersoll, R., Sheppard, H. W. & Ray, S. C. ( 1999; ). Full-length human immunodeficiency virus type 1 genomes from subtype C-infected seroconverters in India, with evidence of intersubtype recombination. J Virol 73, 152–160.
    [Google Scholar]
  27. Oberste, M. S., Maher, K. & Pallansch, M. A. ( 1998; ). Molecular phylogeny of all human enterovirus serotypes based on comparison of sequences at the 5′ end of the region encoding VP2. Virus Res 58, 35–43.[CrossRef]
    [Google Scholar]
  28. Polacino, P., Kaplan, G. & Palma, E. L. ( 1985; ). Homologous interference by a foot-and-mouth disease virus strain attenuated for cattle. Arch Virol 86, 291–301.[CrossRef]
    [Google Scholar]
  29. Salminen, M. O., Carr, J. K., Burke, D. S. & McCutchan, F. E. ( 1995; ). Identification of breakpoints in intergenotypic recombinants of HIV type 1 by bootscanning. AIDS Res Hum Retroviruses 11, 1423–1425.[CrossRef]
    [Google Scholar]
  30. Simmonds, P. & Smith, D. B. ( 1999; ). Structural constraints on RNA virus evolution. J Virol 73, 5787–5794.
    [Google Scholar]
  31. Simmonds, P. & Welch, J. ( 2006; ). Frequency and dynamics of recombination within different species of human enteroviruses. J Virol 80, 483–493.[CrossRef]
    [Google Scholar]
  32. Stanway, G., Kalkkinen, N., Roivainen, M., Ghazi, F., Khan, M., Smyth, M., Meurman, O. & Hyypiä, T. ( 1994; ). Molecular and biological characteristics of echovirus 22, a representative of a new picornavirus group. J Virol 68, 8232–8238.
    [Google Scholar]
  33. Takao, S., Shimazu, Y., Fukuda, S., Noda, M. & Miyazaki, K. ( 2001; ). Seroepidemiological study of human parechovirus 1. Jpn J Infect Dis 54, 85–87.
    [Google Scholar]
  34. Thompson, J. D., Higgins, D. G. & Gibson, T. J. ( 1994; ). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.[CrossRef]
    [Google Scholar]
  35. Tu, Z., Chapman, N. M., Hufnagel, G., Tracy, S., Romero, J. R., Barry, W. H., Zhao, L., Currey, K. & Shapiro, B. ( 1995; ). The cardiovirulent phenotype of coxsackievirus B3 is determined at a single site in the genomic 5′ nontranslated region. J Virol 69, 4607–4618.
    [Google Scholar]
  36. Wakatsuki, K., Kawamoto, D., Hiwaki, H., Watanabe, K. & Yoshida, H. ( 2008; ). Identification and characterization of two strains of human parechovirus 4 isolated from two clinical cases in Fukuoka City, Japan. J Clin Microbiol 46, 3144–3146.[CrossRef]
    [Google Scholar]
  37. Watanabe, K., Oie, M., Higuchi, M., Nishikawa, M. & Fujii, M. ( 2007; ). Isolation and characterization of novel human parechovirus from clinical samples. Emerg Infect Dis 13, 889–895.[CrossRef]
    [Google Scholar]
  38. Williams, C. H., Panayiotou, M., Girling, G. D., Peard, C. I., Oikarinen, S., Hyöty, H. & Stanway, G. ( 2009; ). Evolution and conservation in human parechovirus genomes. J Gen Virol 90, 1702–1712.[CrossRef]
    [Google Scholar]
  39. Wolthers, K. C., Benschop, K. S., Schinkel, J., Molenkamp, R., Bergevoet, R. M., Spijkerman, I. J., Kraakman, H. C. & Pajkrt, D. ( 2008; ). Human parechoviruses as an important viral cause of sepsislike illness and meningitis in young children. Clin Infect Dis 47, 358–363.[CrossRef]
    [Google Scholar]
  40. Zoll, J., Galama, J. M. & van Kuppeveld, F. J. ( 2009; ). Identification of potential recombination breakpoints in human parechoviruses. J Virol 83, 3379–3383.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.022525-0
Loading
/content/journal/jgv/10.1099/vir.0.022525-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error