Selection of an ideal sample is a vital element in early detection of influenza infection. Rapid identification of infectious individuals or animals is crucial not only for avian influenza virus (AIV) surveillance programmes, but also for treatment and containment strategies. This study used a combination of quantitative real-time RT-PCR with an internal positive control and a cell-titration system to examine the presence of virus in different samples during active experimental AIV infection and its persistence in the infected carcasses. Oropharyngeal/cloacal swabs as well as feather pulp and blood samples were collected from 15-day-old chicks infected with H7N1 highly pathogenic AIV (HPAIV) and the kinetics of virus shedding during active infection were evaluated. Additionally, several samples (muscle, skin, brain, feather pulp and oropharyngeal and cloacal swabs) were examined to assess the persistence of virus in the HPAIV-infected carcasses. Based on the results, feather pulp was found to be the best sample to detect and isolate HPAIV from infected chicks from 24 h after inoculation onwards. Kinetic studies on the persistence of virus in infected carcasses revealed that tissues such as muscle could potentially transmit infectious virus for 3 days post-mortem (p.m.), whilst other tissues such as skin, feather pulp and brain retained their infectivity for as long as 5–6 days p.m. at environmental temperature (22–23 °C). These results strongly favour feather as a useful sample for HPAIV diagnosis in infected chickens as well as in carcasses.


Article metrics loading...

Loading full text...

Full text loading...



  1. Abad, F. X., Pintó, R. M. & Bosch, A.(1994). Survival of enteric viruses on environmental fomites. Appl Environ Microbiol 60, 3704–3710. [Google Scholar]
  2. Antarasena, C., Sirimujalin, R., Prommuang, P., Blacksell, S. D., Promkuntod, N. & Prommuang, P.(2006). Tissue tropism of a Thailand strain of high-pathogenicity avian influenza virus (H5N1) in tissues of naturally infected native chickens (Gallus gallus), Japanese quail (Coturnix coturnix japonica) and ducks (Anas spp.). Avian Pathol 35, 250–253.[CrossRef] [Google Scholar]
  3. Brown, J. D., Stallknecht, D. E. & Swayne, D. E.(2008). Experimental infection of swans and geese with highly pathogenic avian influenza virus (H5N1) of Asian lineage. Emerg Infect Dis 14, 136–142.[CrossRef] [Google Scholar]
  4. Busquets, N., Alba, A., Napp, S., Sánchez, A., Serrano, E., Rivas, R., Núñez, J. I. & Majó, N.(2010). Influenza A virus subtypes in wild birds in North-Eastern Spain (Catalonia). Virus Res 149, 10–18.[CrossRef] [Google Scholar]
  5. Capua, I. & Alexander, D. J.(2004). Avian influenza: recent developments. Avian Pathol 33, 393–404.[CrossRef] [Google Scholar]
  6. Capua, I. & Alexander, D. J.(2006). The challenge of avian influenza to the veterinary community. Avian Pathol 35, 189–205.[CrossRef] [Google Scholar]
  7. Capua, I. & Marangon, S.(2000). The avian influenza epidemic in Italy, 1999–2000: a review. Avian Pathol 29, 289–294.[CrossRef] [Google Scholar]
  8. Capua, I., Mutinelli, F., Marangon, S. & Alexander, D. J.(2000). H7N1 avian influenza in Italy (1999 to 2000) in intensively reared chickens and turkeys. Avian Pathol 29, 537–543.[CrossRef] [Google Scholar]
  9. Das, A., Spackman, E., Thomas, C., Swayne, D. E. & Suarez, D. L.(2008). Detection of H5N1 high-pathogenicity avian influenza virus in meat and tracheal samples from experimentally infected chickens. Avian Dis 52, 40–48.[CrossRef] [Google Scholar]
  10. Ellström, P., Latorre-Margalef, N., Griekspoor, P., Waldenström, J., Olofsson, J., Wahlgren, J. & Olsen, B.(2008). Sampling for low-pathogenic avian influenza A virus in wild Mallard ducks: oropharyngeal versus cloacal swabbing. Vaccine 26, 4414–4416.[CrossRef] [Google Scholar]
  11. Fronhoffs, S., Totzke, G., Stier, S., Wernert, N., Rothe, M., Brüning, T., Koch, B., Sachinidis, A., Vetter, H. & Ko, Y.(2002). A method for the rapid construction of cRNA standard curves in quantitative real-time reverse transcription polymerase chain reaction. Mol Cell Probes 16, 99–110.[CrossRef] [Google Scholar]
  12. Gilbert, M., Slingenbergh, J. & Xiao, X.(2008). Climate change and avian influenza. Rev Sci Tech 27, 459–466. [Google Scholar]
  13. Gut, M., Leutenegger, C. M., Huder, J. B., Pedersen, N. C. & Lutz, H.(1999). One-tube fluorogenic reverse transcription-polymerase chain reaction for the quantitation of feline coronaviruses. J Virol Methods 77, 37–46.[CrossRef] [Google Scholar]
  14. Harder, T. C., Teuffert, J., Starick, E., Gethmann, J., Grund, C., Fereidouni, S., Durban, M., Bogner, K. H., Neubauer-Juric, A. & other authors(2009). Highly pathogenic avian influenza virus (H5N1) in frozen duck carcasses, Germany, 2007. Emerg Infect Dis 15, 272–279.[CrossRef] [Google Scholar]
  15. Keawcharoen, J., Oraveerakul, K., Kuiken, T., Fouchier, R. A., Amonsin, A., Payungporn, S., Noppornpanth, S., Wattanodorn, S., Theambooniers, A. & other authors(2004). Avian influenza H5N1 in tigers and leopards. Emerg Infect Dis 10, 2189–2191.[CrossRef] [Google Scholar]
  16. Keawcharoen, J., van Riel, D., van Amerongen, G., Bestebroer, T., Beyer, W. E., van Lavieren, R., Osterhaus, A. D., Fouchier, R. A. & Kuiken, T.(2008). Wild ducks as long-distance vectors of highly pathogenic avian influenza virus (H5N1). Emerg Infect Dis 14, 600–607.[CrossRef] [Google Scholar]
  17. Lee, C. W. & Suarez, D. L.(2004). Application of real-time RT-PCR for the quantitation and competitive replication study of H5 and H7 subtype avian influenza virus. J Virol Methods 119, 151–158.[CrossRef] [Google Scholar]
  18. OIE(2009). Avian influenza. In Manual of Diagnostic Tests and Vaccines for Terrestrial Animals, 5th edn, chapter 2.3.4. Paris: Office International des Epizooties.
  19. Perkins, L. E. & Swayne, D. E.(2001). Pathobiology of A/chicken/Hong Kong/220/97 (H5N1) avian influenza virus in seven gallinaceous species. Vet Pathol 38, 149–164.[CrossRef] [Google Scholar]
  20. Reperant, L. A., van Amerongen, G., van de Bildt, M. W., Rimmelzwaan, G. F., Dobson, A. P., Osterhaus, A. D. & Kuiken, T.(2008). Highly pathogenic avian influenza virus (H5N1) infection in red foxes fed infected bird carcasses. Emerg Infect Dis 14, 1835–1841.[CrossRef] [Google Scholar]
  21. Senne, D. A., Panigrahy, B. & Morgan, R. L.(1994). Effect of composting poultry carcasses on survival of exotic avian viruses: highly pathogenic avian influenza (HPAI) virus and adenovirus of egg drop syndrome-76. Avian Dis 38, 733–737.[CrossRef] [Google Scholar]
  22. Serena Beato, M., Terregino, C., Cattoli, G. & Capua, I.(2006). Isolation and characterization of an H10N7 avian influenza virus from poultry carcasses smuggled from China into Italy. Avian Pathol 35, 400–403.[CrossRef] [Google Scholar]
  23. Serena Beato, M. S., Capua, I. & Alexander, D. J.(2009). Avian influenza viruses in poultry products: a review. Avian Pathol 38, 193–200.[CrossRef] [Google Scholar]
  24. Songserm, T., Amonsin, A., Jam-on, R., Sae-Heng, N., Meemak, N., Pariyothorn, N., Payungporn, S., Theamboonlers, A. & Poovorawan, Y.(2006a). Avian influenza H5N1 in naturally infected domestic cat. Emerg Infect Dis 12, 681–683.[CrossRef] [Google Scholar]
  25. Songserm, T., Amonsin, A., Jam-on, R., Sae-Heng, N., Pariyothorn, N., Payungporn, S., Theamboonlers, A., Chutinimitkul, S., Thanawongnuwech, R. & Poovorawan, Y.(2006b). Fatal avian influenza A H5N1 in a dog. Emerg Infect Dis 12, 1744–1747.[CrossRef] [Google Scholar]
  26. Spackman, E., Senne, D. A., Myers, T. J., Bulaga, L. L., Garber, L. P., Perdue, M. L., Lohman, K., Daum, L. T. & Suarez, D. L.(2002). Development of a real-time reverse transcriptase PCR assay for type A influenza virus and the avian H5 and H7 hemagglutinin subtypes. J Clin Microbiol 40, 3256–3260.[CrossRef] [Google Scholar]
  27. Spickler, A. R., Trampel, D. W. & Roth, J. A.(2008). The onset of virus shedding and clinical signs in chickens infected with high-pathogenicity and low-pathogenicity avian influenza viruses. Avian Pathol 37, 555–577.[CrossRef] [Google Scholar]
  28. Stallknecht, D. E., Kearney, M. T., Shane, S. M. & Zwank, P. J.(1990a). Effects of pH, temperature, and salinity on persistence of avian influenza viruses in water. Avian Dis 34, 412–418.[CrossRef] [Google Scholar]
  29. Stallknecht, D. E., Shane, S. M., Kearney, M. T. & Zwank, P. J.(1990b). Persistence of avian influenza viruses in water. Avian Dis 34, 406–411.[CrossRef] [Google Scholar]
  30. Starick, E. & Werner, O.(2003). Detection of H7 avian influenza virus directly from poultry specimens. Avian Dis 47, 1187–1189.[CrossRef] [Google Scholar]
  31. Stech, O., Veits, J., Weber, S., Deckers, D., Schroer, D., Vahlenkamp, T. W., Breithaupt, A., Teifke, J., Mettenleiter, T. C. & Stech, J.(2009). Acquisition of a polybasic hemagglutinin cleavage site by a low-pathogenic avian influenza virus is not sufficient for immediate transformation into a highly pathogenic strain. J Virol 83, 5864–5868.[CrossRef] [Google Scholar]
  32. Sturm-Ramirez, K. M., Hulse-Post, D. J., Govorkova, E. A., Humberd, J., Seiler, P., Puthavathana, P., Buranathai, C., Nguyen, T. D., Chaisingh, A. & other authors(2005). Are ducks contributing to the endemicity of highly pathogenic H5N1 influenza virus in Asia? J Virol 79, 11269–11279.[CrossRef] [Google Scholar]
  33. Swayne, D. E.(2006). Microassay for measuring thermal inactivation of H5N1 high pathogenicity avian influenza virus in naturally infected chicken meat. Int J Food Microbiol 108, 268–271.[CrossRef] [Google Scholar]
  34. Swayne, D. E.(2007). Understanding the complex pathobiology of high pathogenicity avian influenza viruses in birds. Avian Dis 51, 242–249.[CrossRef] [Google Scholar]
  35. Swayne, D. E. & Beck, J. R.(2005). Experimental study to determine if low-pathogenicity and high-pathogenicity avian influenza viruses can be present in chicken breast and thigh meat following intranasal virus inoculation. Avian Dis 49, 81–85.[CrossRef] [Google Scholar]
  36. Tiensin, T., Chaitaweesub, P., Songserm, T., Chaisingh, A., Hoonsuwan, W., Buranathai, C., Parakamawongsa, T., Premashthira, S., Amonsin, A. & other authors(2005). Highly pathogenic avian influenza H5N1, Thailand, 2004. Emerg Infect Dis 11, 1664–1672.[CrossRef] [Google Scholar]
  37. Toffan, A., Serena Beato, M., De Nardi, R., Bertoli, E., Salviato, A., Cattoli, G., Terregino, C. & Capua, I.(2008). Conventional inactivated bivalent H5/H7 vaccine prevents viral localization in muscles of turkeys infected experimentally with low pathogenic avian influenza and highly pathogenic avian influenza H7N1 isolates. Avian Pathol 37, 407–412.[CrossRef] [Google Scholar]
  38. Tumpey, T. M., Suarez, D. L., Perkins, L. E., Senne, D. A., Lee, J. G., Lee, Y. J., Mo, I. P., Sung, H. W. & Swayne, D. E.(2002). Characterization of a highly pathogenic H5N1 avian influenza A virus isolated from duck meat. J Virol 76, 6344–6355.[CrossRef] [Google Scholar]
  39. Villegas, P.(1998). Titration of biological suspensions. In A Laboratory Manual for the Isolation and Identification of Avian Pathogens, 4th edn, pp. 248–254. Edited by D. E. Swayne, J. R. Glisson, M. W. Jackwood, J. E. Pearson & W. M. Reed. Kennett Square, PA: American Association of Avian Pathologists.
  40. Webster, R. G. & Bean, W. J., Jr(1978). Genetics of influenza virus. Annu Rev Genet 12, 415–431.[CrossRef] [Google Scholar]
  41. Webster, R. G., Bean, W. J., Gorman, O. T., Chambers, T. M. & Kawaoka, Y.(1992). Evolution and ecology of influenza A viruses. Microbiol Rev 56, 152–179. [Google Scholar]
  42. Yamamoto, Y., Nakamura, K., Kitagawa, K., Ikenaga, N., Yamada, M., Mase, M. & Narita, M.(2007). Severe nonpurulent encephalitis with mortality and feather lesions in call ducks (Anas platyrhyncha var. domestica) inoculated intravenously with H5N1 highly pathogenic avian influenza virus. Avian Dis 51, 52–57.[CrossRef] [Google Scholar]
  43. Yamamoto, Y., Nakamura, K., Okamatsu, M., Miyazaki, A., Yamada, M. & Mase, M.(2008a). Detecting avian influenza virus (H5N1) in domestic duck feathers. Emerg Infect Dis 14, 1671–1672.[CrossRef] [Google Scholar]
  44. Yamamoto, Y., Nakamura, K., Okamatsu, M., Yamada, M. & Mase, M.(2008b). Avian influenza virus (H5N1) replication in feathers of domestic waterfowl. Emerg Infect Dis 14, 149–151.[CrossRef] [Google Scholar]

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error