1887

Abstract

Epstein–Barr virus (EBV) is ubiquitous in the human population and seroepidemiological studies have revealed that more than 90 % of adults are infected with the virus in Thailand. It has been suggested that latent membrane protein 1 (LMP1) variants may differ in their tumorigenicity and geographical localization. The distribution of LMP1 variants of EBV in the Thai population was studied. A total of 259 LMP1 sequences from ten Thai ethnic groups (Lahu, Lisu, Shan, Red Karen, White Karen, Hmong, Akha, Mlabri, Moken and Urak Lawoi) were studied using direct PCR sequencing. Nucleotide sequences corresponding to the C terminus of the LMP1, including previously published sequences from central and southern Thais, were used in the phylogenetic analysis. Five strains – the B95-8 prototype, China 1, China 2, Mediterranean (Med) and SEA 2 – were identified in ethnic groups in Thailand. The major strain and the distribution pattern differed by group and location. When the ethnic groups were classified by linguistic group, the prevalence of the SEA 2 strain was significantly different between Austro-Thais and other linguistic groups (=0.0001), whereas, among Tibeto-Burman linguistic groups, the prevalence of the Med strain was different between matrilocal and patrilocal groups (=0.0245). The distribution of LMP1 strains in ethnic minorities in Thailand is associated with ethnogeographical factors and the social/marriage system. This study thus provides evidence for the importance of interactions between populations in virus diversity.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.021105-0
2010-08-01
2019-11-12
Loading full text...

Full text loading...

/deliver/fulltext/jgv/91/8/2054.html?itemId=/content/journal/jgv/10.1099/vir.0.021105-0&mimeType=html&fmt=ahah

References

  1. Agostini, H. T., Yanagihara, R., Davis, V., Ryschkewitsch, C. F. & Stoner, G. L. ( 1997; ). Asian genotypes of JC virus in Native Americans and in a Pacific Island population: markers of viral evolution and human migration. Proc Natl Acad Sci U S A 94, 14542–14546.[CrossRef]
    [Google Scholar]
  2. Anderson, E. F. ( 1993; ). Plants and People of the Golden Triangle. Bangkok: Silkworm Books.
  3. Baer, R., Bankier, A. T., Biggin, M. D., Deininger, P. L., Farrell, P. J., Gibson, T. J., Hatfull, G., Hudson, G. S., Satchwell, S. C. & other authors ( 1984; ). DNA sequence and expression of the B95-8 Epstein–Barr virus genome. Nature 310, 207–211.[CrossRef]
    [Google Scholar]
  4. Barbie, J. ( 1992; ). Chinese culture and demographic trends in Thailand and Malaysia. Chin J Popul Sci 4, 139–148.
    [Google Scholar]
  5. Beyrer, C., Celentano, D. D., Suprasert, S., Sittitrai, W., Nelson, K. E., Kongsub, B., Go, V. & Phanupak, P. ( 1997; ). Widely varying HIV prevalence and risk behaviours among the ethnic minority peoples of northern Thailand. AIDS Care 9, 427–439.[CrossRef]
    [Google Scholar]
  6. Burrows, J. M., Bromham, L., Woolfit, M., Piganeau, G., Tellam, J., Connolly, G., Webb, N., Poulsen, L., Cooper, L. & other authors ( 2004; ). Selection pressure-driven evolution of the Epstein–Barr virus-encoded oncogene LMP1 in virus isolates from Southeast Asia. J Virol 78, 7131–7137.[CrossRef]
    [Google Scholar]
  7. Butler, J. M. ( 2003; ). Recent developments in Y-short tandem repeat and Y-single nucleotide polymorphism analysis. Forensic Sci Rev 15, 91–111.
    [Google Scholar]
  8. Edwards, R. H., Seillier-Moiseiwitsch, F. & Raab-Traub, N. ( 1999; ). Signature amino acid changes in latent membrane protein 1 distinguish Epstein–Barr virus strains. Virology 261, 79–95.[CrossRef]
    [Google Scholar]
  9. Fucharoen, G., Fucharoen, S. & Horai, S. ( 2001; ). Mitochondrial DNA polymorphisms in Thailand. J Hum Genet 46, 115–125.[CrossRef]
    [Google Scholar]
  10. Given, D. & Kieff, E. ( 1979; ). DNA of Epstein–Barr virus. VI. Mapping of the internal tandem reiteration. J Virol 31, 315–324.
    [Google Scholar]
  11. Given, D., Yee, D., Griem, K. & Kieff, E. ( 1979; ). DNA of Epstein–Barr virus. V. Direct repeats of the ends of Epstein–Barr virus DNA. J Virol 30, 852–862.
    [Google Scholar]
  12. Gordon, R. G., Jr (ed.) ( 2005; ). Ethnologue: Languages of the World, 15th edn. Dallas, TX: SIL International. http://www.ethnologue.com/ (accessed 11 June 2006).
  13. Hayward, G. S. & Zong, J.-C. ( 2007; ). Modern evolutionary history of the human KSHV genome. Curr Top Microbiol Immunol 312, 1–42.
    [Google Scholar]
  14. Izumi, K. M. ( 2001; ). Identification of EBV transforming genes by recombinant EBV technology. Semin Cancer Biol 11, 407–414.[CrossRef]
    [Google Scholar]
  15. Kaye, K. M., Izumi, K. M., Mosialos, G. & Kieff, E. ( 1995; ). The Epstein–Barr virus LMP1 cytoplasmic carboxy terminus is essential for B-lymphocyte transformation; fibroblast cocultivation complements a critical function within the terminal 155 residues. J Virol 69, 675–683.
    [Google Scholar]
  16. Kim, L.-H. & Peh, S.-C. ( 2003; ). Epstein–Barr virus-associated lymphomas in Malaysia: high frequency of a 30-bp deletion in the viral latent membrane protein-1 (LMP-1) oncogene. J Clin Exp Hematop 43, 11–19.[CrossRef]
    [Google Scholar]
  17. Kumar, S., Tamura, K. & Nei, M. ( 2004; ). mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5, 150–163.[CrossRef]
    [Google Scholar]
  18. Larcher, C., McQuain, C., Berger, C., Mitterer, M., Quesenberry, P. J., Huemer, H. P. & Knecht, H. ( 1997; ). Epstein–Barr virus-associated persistent polyclonal B-cell lymphocytosis with a distinct 69-base pair deletion in the LMP1 oncogene. Ann Hematol 74, 23–28.[CrossRef]
    [Google Scholar]
  19. Lin, J. C., Lin, S. C., Luppi, M., Torelli, G. & Mar, E. C. ( 1995; ). Geographic sequence variation of latent membrane protein 1 gene of Epstein–Barr virus in Hodgkin's lymphomas. J Med Virol 45, 183–191.[CrossRef]
    [Google Scholar]
  20. Miller, W. E., Edwards, R. H., Walling, D. M. & Raab-Traub, N. ( 1994; ). Sequence variation in the Epstein–Barr virus latent membrane protein 1. J Gen Virol 75, 2729–2740.[CrossRef]
    [Google Scholar]
  21. Mitarnun, W., Suwiwat, S., Pradutkanchana, J., Saechan, V., Ishida, T., Takao, S. & Mori, A. ( 2002; ). Epstein–Barr virus-associated peripheral T-cell and NK-cell proliferative disease/lymphoma: clinicopathologic, serologic, and molecular analysis. Am J Hematol 70, 31–38.[CrossRef]
    [Google Scholar]
  22. Miura, T., Fukunaga, T., Igarashi, T., Yamashita, M., Funahashi, S., Ishida, T., Washio, K., Ueda, S., Hashimoto, K. & other authors ( 1994; ). Phylogenetic subtypes of human T-lymphotropic virus type I and their relations to the anthropological background. Proc Natl Acad Sci U S A 91, 1124–1127.[CrossRef]
    [Google Scholar]
  23. Nguyen-Van, D., Enrberg, I., Phan-Thi Phi, P., Tran-Thi, C. & Hu, L. ( 2008; ). Epstein–Barr virus genetic variation in Vietnamese patients with nasopharyngeal carcinoma: full-length analysis of LMP1. Virus Genes 37, 273–281.[CrossRef]
    [Google Scholar]
  24. Oota, H., Settheetham-Ishida, W., Tiwawech, D., Ishida, T. & Stoneking, M. ( 2001; ). Human mtDNA and Y-chromosome variation is correlated with matrilocal versus patrilocal residence. Nat Genet 29, 20–21.[CrossRef]
    [Google Scholar]
  25. Oota, H., Pakendorf, B., Weiss, G., von Haeseler, A., Pookajorn, S., Settheetham-Ishida, W., Tiwawech, D., Ishida, T. & Stoneking, M. ( 2005; ). Recent origin and cultural reversion of a hunter–gatherer group. PLoS Biol 3, e71 [CrossRef]
    [Google Scholar]
  26. Parker, B. D., Bankier, A., Satchwell, S., Barrell, B. & Farrell, P. J. ( 1990; ). Sequence and transcription of Raji Epstein–Barr virus DNA spanning the B95-8 deletion region. Virology 179, 339–346.[CrossRef]
    [Google Scholar]
  27. Saechan, V., Mori, A., Mitarnun, W., Settheetham-Ishida, W. & Ishida, T. ( 2006; ). Analysis of LMP1 variants of EBV in Southern Thailand: evidence for strain-associated T-cell tropism and pathogenicity. J Clin Virol 36, 119–125.[CrossRef]
    [Google Scholar]
  28. Sitki-Green, D., Edwards, R. H., Webster-Cyriaque, J. & Raab-Traub, N. ( 2002; ). Identification of Epstein–Barr virus strain variants in hairy leukoplakia and peripheral blood by use of a heteroduplex tracking assay. J Virol 76, 9645–9656.[CrossRef]
    [Google Scholar]
  29. Sitki-Green, D., Covington, M. & Raab-Traub, N. ( 2003; ). Compartmentalization and transmission of multiple Epstein–Barr virus strains in asymptomatic carriers. J Virol 77, 1840–1847.[CrossRef]
    [Google Scholar]
  30. Sung, N. S., Edwards, R. H., Seillier-Moiseiwitsch, F., Perkins, A. G., Zeng, Y. & Raab-Traub, N. ( 1998; ). Epstein–Barr virus strain variation in nasopharyngeal carcinoma from the endemic and non-endemic regions of China. Int J Cancer 76, 207–215.[CrossRef]
    [Google Scholar]
  31. Thompson, J. D., Higgins, D. G. & Gibson, T. J. ( 1994; ). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.[CrossRef]
    [Google Scholar]
  32. Thorley-Lawson, D. A. ( 2001; ). Epstein–Barr virus: exploiting the immune system. Nat Rev Immunol 1, 75–82.[CrossRef]
    [Google Scholar]
  33. Tiwawech, D., Srivatanakul, P., Karaluk, A. & Ishida, T. ( 2003; ). Significance of plasma IgA and IgG antibodies to Epstein–Barr virus early and viral capsid antigens in Thai nasopharyngeal carcinoma. Asian Pac J Cancer Prev 4, 113–118.
    [Google Scholar]
  34. Tiwawech, D., Srivatanakul, P., Karalak, A. & Ishida, T. ( 2008; ). Association between EBNA2 and LMP1 subtypes of Epstein–Barr virus and nasopharyngeal carcinoma in Thais. J Clin Virol 42, 1–6.[CrossRef]
    [Google Scholar]
  35. Wang, D., Liebowitz, D., Wang, F., Gregory, C., Rickinson, A., Larson, R., Springer, T. & Kieff, E. ( 1988; ). Epstein–Barr virus latent infection membrane protein alters the human B-lymphocyte phenotype: deletion of the amino terminus abolishes activity. J Virol 62, 4173–4184.
    [Google Scholar]
  36. Wang, L., Hirayasu, K., Ishidazawa, M. & Kobayashi, Y. ( 1994; ). Purification of genomic DNA from human whole blood by isopropanol-fractionation with concentrated NaI and SDS. Nucleic Acids Res 22, 1774–1775.[CrossRef]
    [Google Scholar]
  37. Yogo, Y., Sugimoto, C., Zheng, H. Y., Ikegaya, H., Takasaka, T. & Kitamura, T. ( 2004; ). JC virus genotyping offers a new paradigm in the study of human populations. Rev Med Virol 14, 179–191.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.021105-0
Loading
/content/journal/jgv/10.1099/vir.0.021105-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error