1887

Abstract

Alphavirus-based replicon systems are frequently used as preclinical vectors and as antigen discovery tools, and they have recently been assessed in clinical vaccine trials. Typically, alphavirus replicon RNAs are delivered within virus-like replicon particles (VRP) that are produced following transfection of replicon RNA and two helper RNAs into permissive cells . The non-structural proteins expressed from the replicon RNA amplify the replicon RNA and the helper RNAs the latter providing the viral structural proteins necessary to package the replicon RNA into VRP. Current helper RNA designs incorporate the alphavirus 26S promoter to direct the transcription of high levels of structural gene mRNAs. We demonstrate here that the 26S promoter is not required on helper RNAs to produce VRP and propose that such promoterless helper RNAs, by design, reduce the probability of generating replication-competent virus that may otherwise result from RNA recombination.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.020081-0
2010-07-01
2019-11-18
Loading full text...

Full text loading...

/deliver/fulltext/jgv/91/7/1723.html?itemId=/content/journal/jgv/10.1099/vir.0.020081-0&mimeType=html&fmt=ahah

References

  1. Atkins, G. J., Fleeton, M. N. & Sheahan, B. J. ( 2008; ). Therapeutic and prophylactic applications of alphavirus vectors. Expert Rev Mol Med 10, e33 [CrossRef]
    [Google Scholar]
  2. Berglund, P., Sjoberg, M., Garoff, H., Atkins, G. J., Sheahan, B. J. & Liljestrom, P. ( 1993; ). Semliki Forest virus expression system: production of conditionally infectious recombinant particles. Biotechnology (N Y) 11, 916–920.[CrossRef]
    [Google Scholar]
  3. Bernstein, D. I., Reap, E. R., Katen, K., Watson, A., Smith, K., Norberg, P., Olmsted, R. A., Hoeper, A., Morris, J. & other authors ( 2009; ). Randomized, double-blind, phase 1 trial of an alphavirus replicon vaccine for cytomegalovirus in CMV seronegative adult volunteers. Vaccine 28, 484–493.[CrossRef]
    [Google Scholar]
  4. Bredenbeek, P. J., Frolov, I., Rice, C. M. & Schlesinger, S. ( 1993; ). Sindbis virus expression vectors: packaging of RNA replicons by using defective helper RNAs. J Virol 67, 6439–6446.
    [Google Scholar]
  5. Frolov, I., Frolova, E. & Schlesinger, S. ( 1997; ). Sindbis virus replicons and Sindbis virus: assembly of chimeras and of particles deficient in virus RNA. J Virol 71, 2819–2829.
    [Google Scholar]
  6. Frolov, I., Hardy, R. & Rice, C. M. ( 2001; ). Cis-acting RNA elements at the 5′ end of Sindbis virus genome RNA regulate minus- and plus-strand RNA synthesis. RNA 7, 1638–1651.[CrossRef]
    [Google Scholar]
  7. Geigenmuller-Gnirke, U., Weiss, B., Wright, R. & Schlesinger, S. ( 1991; ). Complementation between Sindbis viral RNAs produces infectious particles with a bipartite genome. Proc Natl Acad Sci U S A 88, 3253–3257.[CrossRef]
    [Google Scholar]
  8. Hill, K. R., Hajjou, M., Hu, J. Y. & Raju, R. ( 1997; ). RNA–RNA recombination in Sindbis virus: roles of the 3′ conserved motif, poly(A) tail, and nonviral sequences of template RNAs in polymerase recognition and template switching. J Virol 71, 2693–2704.
    [Google Scholar]
  9. Hubby, B., Talarico, T., Maughan, M., Reap, E. A., Berglund, P., Kamrud, K. I., Copp, L., Lewis, W., Cecil, C. & other authors ( 2007; ). Development and preclinical evaluation of an alphavirus replicon vaccine for influenza. Vaccine 25, 8180–8189.[CrossRef]
    [Google Scholar]
  10. Kamrud, K. I., Custer, M., Dudek, J. M., Owens, G., Alterson, K. D., Lee, J. S., Groebner, J. L. & Smith, J. F. ( 2007; ). Alphavirus replicon approach to promoterless analysis of IRES elements. Virology 360, 376–387.[CrossRef]
    [Google Scholar]
  11. Kozak, M. ( 1984; ). Compilation and analysis of sequences upstream from the translational start site in eukaryotic mRNAs. Nucleic Acids Res 12, 857–872.[CrossRef]
    [Google Scholar]
  12. Liljestrom, P. & Garoff, H. ( 1991; ). A new generation of animal cell expression vectors based on the Semliki Forest virus replicon. Biotechnology (N Y) 9, 1356–1361.[CrossRef]
    [Google Scholar]
  13. Monroe, S. S. & Schlesinger, S. ( 1984; ). Common and distinct regions of defective-interfering RNAs of Sindbis virus. J Virol 49, 865–872.
    [Google Scholar]
  14. Niesters, H. G. & Strauss, J. H. ( 1990; ). Mutagenesis of the conserved 51-nucleotide region of Sindbis virus. J Virol 64, 1639–1647.
    [Google Scholar]
  15. Ou, J. H., Strauss, E. G. & Strauss, J. H. ( 1983; ). The 5′-terminal sequences of the genomic RNAs of several alphaviruses. J Mol Biol 168, 1–15.[CrossRef]
    [Google Scholar]
  16. Polo, J. M., Belli, B. A., Driver, D. A., Frolov, I., Sherrill, S., Hariharan, M. J., Townsend, K., Perri, S., Mento, S. J. & other authors ( 1999; ). Stable alphavirus packaging cell lines for Sindbis virus and Semliki Forest virus-derived vectors. Proc Natl Acad Sci U S A 96, 4598–4603.[CrossRef]
    [Google Scholar]
  17. Pushko, P., Parker, M., Ludwig, G. V., Davis, N. L., Johnston, R. E. & Smith, J. F. ( 1997; ). Replicon-helper systems from attenuated Venezuelan equine encephalitis virus: expression of heterologous genes in vitro and immunization against heterologous pathogens in vivo. Virology 239, 389–401.[CrossRef]
    [Google Scholar]
  18. Raju, R., Subramaniam, S. V. & Hajjou, M. ( 1995; ). Genesis of Sindbis virus by in vivo recombination of nonreplicative RNA precursors. J Virol 69, 7391–7401.
    [Google Scholar]
  19. Smerdou, C. & Liljestrom, P. ( 1999; ). Two-helper RNA system for production of recombinant Semliki forest virus particles. J Virol 73, 1092–1098.
    [Google Scholar]
  20. Strauss, J. H. & Strauss, E. G. ( 1990; ). Alphavirus proteinases. Semin Virol 1, 347–356.
    [Google Scholar]
  21. Tsiang, M., Weiss, B. G. & Schlesinger, S. ( 1988; ). Effects of 5′-terminal modifications on the biological activity of defective interfering RNAs of Sindbis virus. J Virol 62, 47–53.
    [Google Scholar]
  22. Volkova, E., Gorchakov, R. & Frolov, I. ( 2006; ). The efficient packaging of Venezuelan equine encephalitis virus-specific RNAs into viral particles is determined by nsP1–3 synthesis. Virology 344, 315–327.[CrossRef]
    [Google Scholar]
  23. Weiss, B. G. & Schlesinger, S. ( 1991; ). Recombination between Sindbis virus RNAs. J Virol 65, 4017–4025.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.020081-0
Loading
/content/journal/jgv/10.1099/vir.0.020081-0
Loading

Data & Media loading...

Supplements

vol. , part 7, pp. 1723 - 1727

Northern blot analysis of standard, dH(FL) capsid and dH(FL)GP helper RNAs [PDF](53 KB)



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error