Viruses that establish lifelong latent infections must ensure that the viral genome is maintained within the latently infected cell throughout the life of the host, yet at the same time must also be capable of avoiding elimination by the immune surveillance system. Gammaherpesviruses, which include the human viruses Epstein–Barr virus and Kaposi's sarcoma-associated herpesvirus, establish latent infections in lymphocytes. Infection of this dynamic host-cell population requires that the viruses have appropriate strategies for enabling the viral genome to persist while these cells go through rounds of mitosis, but at the same time must avoid detection by host CD8 cytotoxic T lymphocytes (CTLs). The majority of gammaherpesviruses studied have been found to encode a specific protein that is critical for maintenance of the viral genome within latently infected cells. This protein is termed the genome maintenance protein (GMP). Due to its vital role in long-term latency, this offers the immune system a crucial target for detection and elimination of virus-infected cells. GMPs from different gammaherpesviruses have evolved related strategies that allow the protein to be present within latently infected cells, but to remain effectively hidden from circulating CD8 CTLs. In this review, I will summarize the role of the GMPs and highlight the available data describing the immune-evasion properties of these proteins.


Article metrics loading...

Loading full text...

Full text loading...



  1. Albrecht, J.-C.(2000). Primary structure of the Herpesvirus ateles genome. J Virol 74, 1033–1037.[CrossRef] [Google Scholar]
  2. Albrecht, J.-C., Nicholas, J., Biller, D., Cameron, K. R., Biesinger, B., Newman, C., Wittman, S., Craxton, M. A., Coleman, H. & other authors(1992). Primary structure of the herpesvirus saimiri genome. J Virol 66, 5047–5058. [Google Scholar]
  3. Alexander, L., Denekamp, L., Knapp, A., Auerbach, M. R., Damania, B. & Desrosiers, R. C.(2000). The primary sequence of rhesus monkey rhadinovirus isolate 26-95: sequence similarities to Kaposi's sarcoma-associated herpesvirus and rhesus rhadinovirus isolate 17577. J Virol 74, 3388–3398.[CrossRef] [Google Scholar]
  4. Allen, R. D., Dickerson, S. & Speck, S. H.(2006). Identification of spliced gammaherpesvirus 68 LANA and v-cyclin transcripts and analysis of their expression in vivo during latent infection. J Virol 80, 2055–2062.[CrossRef] [Google Scholar]
  5. Apcher, S., Komarova, A., Daskalogianni, C., Yin, Y., Malbert-Coas, L. & Frahaeus, R.(2009). mRNA translation regulation by the Gly-Ala repeat of Epstein–Barr virus nuclear antigen 1. J Virol 83, 1289–1298.[CrossRef] [Google Scholar]
  6. Baer, R., Bankier, A. T., Biggin, M. D., Deininger, P. L., Farrell, P. J., Gibson, T. J., Hatfull, G., Hudson, G. S., Satchwell, S. C. & other authors(1984). DNA sequence and expression of the B95-8 Epstein–Barr virus genome. Nature 310, 207–211.[CrossRef] [Google Scholar]
  7. Ballestas, M. E. & Kaye, K. W.(2001). Kaposi's sarcoma-associated herpesvirus latency-associated nuclear antigen 1 mediates episome persistence through cis-acting terminal repeat (TR) sequence and specifically binds TR DNA. J Virol 75, 3250–3258.[CrossRef] [Google Scholar]
  8. Ballestas, M. E., Chatis, P. A. & Kaye, K. M.(1999). Efficient persistence of extrachromosomal KSHV DNA mediated by latency-associated nuclear antigen. Science 284, 641–644.[CrossRef] [Google Scholar]
  9. Barbera, A. J., Ballestas, M. E. & Kaye, K. M.(2004). The Kaposi's sarcoma-associated herpesvirus latency-associated nuclear antigen 1 N terminus is essential for chromosome association, DNA replication, and episomal maintenance. J Virol 78, 294–301.[CrossRef] [Google Scholar]
  10. Barbera, A. J., Chodaparambil, J. V., Kelley-Clarke, B., Joukov, V., Walter, J. C., Luger, K. & Kaye, K. M.(2006). The nucleosomal surface as a docking system for Kaposi's sarcoma herpesvirus LANA. Science 311, 856–861.[CrossRef] [Google Scholar]
  11. Bennett, N. J., May, J. S. & Stevenson, P.(2005). Gamma-herpesvirus latency requires T cell evasion during episome maintenance. PLoS Biol 3, e120[CrossRef] [Google Scholar]
  12. Biesinger, B., Trimble, J. J., Desrosiers, R. C. & Fleckenstein, B.(1990). The divergence between two oncogenic herpesvirus saimiri strains in a genomic region related to the transforming phenotype. Virology 176, 505–514.[CrossRef] [Google Scholar]
  13. Biesinger, B., Muller-Fleckenstein, I., Simmer, B., Lang, G., Wittman, S., Plazter, E., Desrosiers, R. C. & Fleckenstein, B.(1992). Stable growth transformation of human T lymphocytes by Herpesvirus saimiri. Proc Natl Acad Sci U S A 89, 3116–3119.[CrossRef] [Google Scholar]
  14. Bihl, F., Naranyan, M., Chisholm, J. V., III, Henry, L. M., Suscovich, T. J., Brown, E. E., Welzel, T. M., Kaufmann, D. E., Zaman, T. M. & other authors(2007). Lytic and latent antigens of the human gammaherpesvirus Kaposi's sarcoma-associated herpesvirus and Epstein–Barr virus induce T-cell responses with similar functional properties and memory phenotypes. J Virol 81, 4904–4908.[CrossRef] [Google Scholar]
  15. Blake, N., Lee, S., Redchenko, I., Thomas, W., Steven, N., Leese, A., Steigerwald-Mullen, P., Kurilla, M. G., Frappier, L. & Rickinson, A.(1997). Human CD8+ T cell responses to EBV EBNA1: HLA class I presentation of the (Gly-Ala)-containing protein requires exogenous processing. Immunity 7, 791–802.[CrossRef] [Google Scholar]
  16. Blake, N. W., Moghaddam, A., Roa, P., Kaur, A., Glickman, R., Cho, Y.-G., Marchini, A., Haigh, T., Johnson, P. & other authors(1999). Inhibition of antigen presentation by the glycine/alanine repeat domain of the Epstein–Barr virus nuclear antigen 1 homologue is not essential for persistent infection by baboon and rhesus lymphocryptoviruses. J Virol 73, 7381–7389. [Google Scholar]
  17. Blake, N., Haigh, T., Shaka'a, G., Croom-Carter, D. & Rickinson, A.(2000). The importance of exogenous antigen in priming the human CD8+ T cell responses: lessons from the EBV nuclear antigen, EBNA1. J Immunol 165, 7078–7087.[CrossRef] [Google Scholar]
  18. Blasdell, K., McCracken, C., Morris, A., Nash, A. A., Begon, M., Bennett, M. & Stewart, J. P.(2003). The wood mouse is a natural host for Murid herpesvirus4. J Gen Virol 84, 111–113.[CrossRef] [Google Scholar]
  19. Brander, C., Raje, N., O'Connor, P. G., Davies, F., Davis, J., Chauhan, D., Hideshima, T., Martin, J., Osmond, D. & other authors(2002). Absence of biologically important Kaposi's sarcoma-associated herpesvirus gene products and virus-specific cellular immune responses in multiple myeloma. Blood 100, 698–700.[CrossRef] [Google Scholar]
  20. Burnside, K. L., Ryan, J. T., Bielefeldt-Ohmann, H., Bruce, A. G., Thouless, M. E., Tsai, C.-C. & Rose, T. M.(2006). RFHVMn ORF73 is structurally related to the KSHV ORF73 latency-associated nuclear antigen (LANA) and is expressed retroperitoneal fibromatosis (RF) tumor cells. Virology 354, 103–115.[CrossRef] [Google Scholar]
  21. Calderwood, M. A., Hall, K. T., Matthews, D. A. & Whitehouse, A.(2004). The herpesvirus saimiri ORF73 gene product interacts with host-cell mitotic chromosomes and self-associates via its C terminus. J Gen Virol 85, 147–153.[CrossRef] [Google Scholar]
  22. Calderwood, M., White, R. E., Griffiths, R. A. & Whitehouse, A.(2005). Open reading frame 73 is required for herpesvirus saimiri A11-S4 episomal persistence. J Gen Virol 86, 2703–2708.[CrossRef] [Google Scholar]
  23. Cesarman, E., Chang, Y., Moore, P. S., Said, J. W. & Knowles, D. M.(1995). Kaposi's sarcoma-associated herpesvirus-like DNA sequences in AIDS-related body-cavity-based lymphomas. N Engl J Med 332, 1186–1191.[CrossRef] [Google Scholar]
  24. Chang, Y. & Moore, P. S.(1996). Kaposi's sarcoma (KS)-associated herpesvirus and its role in KS. Infect Agents Dis 5, 215–222. [Google Scholar]
  25. Chang, Y., Cesarman, E., Pessin, M. S., Lee, F., Culpepper, J., Knowles, D. M. & Moore, P. S.(1994). Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi's sarcoma. Science 266, 1865–1869.[CrossRef] [Google Scholar]
  26. Chang, Y., Moore, P. S., Talbot, S. J., Boshoff, C. H., Zarkowska, T., Godden, K., Paterson, H., Weiss, R. A. & Mittnacht, S.(1996). Cyclin encoded by KS herpesvirus. Nature 382, 410[CrossRef] [Google Scholar]
  27. Cho, Y.-G., Ramer, J., Rivailler, P., Quink, C., Garber, R. L., Beier, D. R. & Wang, F.(2001). An Epstein–Barr virus-related herpesvirus from marmoset lymphomas. Proc Natl Acad Sci U S A 98, 1224–1229.[CrossRef] [Google Scholar]
  28. Coleman, H. M., Efstathiou, S. & Stevenson, P. G.(2005). Transcription of the murine gammaherpesvirus 68 ORF73 from promoters in the viral repeats. J Gen Virol 86, 561–574.[CrossRef] [Google Scholar]
  29. Collins, C. M., Medveczky, M. M., Lund, T. & Medveczky, P. G.(2002). The terminal repeats and latency-associated nuclear antigen of herpesvirus saimiri are essential for episomal persistence of the viral genome. J Gen Virol 83, 2269–2278. [Google Scholar]
  30. Cossee, M., Campuzano, V., Koutnikova, H., Fishbeck, K., Mandel, J. L., Koenig, M., Bidichandani, S. I., Patel, P. I., Molto, M. D. & other authors(1997). Frataxin fracas. Nat Genet 15, 337–338.[CrossRef] [Google Scholar]
  31. Cotter, M. A. & Robertson, E. S.(1999). The latency-associated nuclear antigen tethers the Kaposi's sarcoma-associated herpesvirus genome to host chromosomes in body cavity-based lymphoma cells. Virology 264, 254–264.[CrossRef] [Google Scholar]
  32. Cotter, M. A., Subramanian, C. & Robertson, E. S.(2001). The Kaposi's sarcoma-associated herpesvirus latency-associated nuclear antigen binds to specific sequences at the left end of the viral genome through its carboxy-terminus. Virology 291, 241–259.[CrossRef] [Google Scholar]
  33. Cristillo, A. D., Mortimer, J. R., Barratte, I. H., Lillicrap, T. P. & Forsdyke, D. R.(2001). Double-stranded RNA as a not-self alarm signal: to evade, most viruses purine-load their RNAs but some (HTLV-1, Epstein–Barr) pyrimidine-load. J Theor Biol 208, 475–491.[CrossRef] [Google Scholar]
  34. Damania, B. & Desrosiers, R. C.(2001). Simian homologues of human herpesvirus 8. Philos Trans R Soc Lond B Biol Sci 356, 535–543.[CrossRef] [Google Scholar]
  35. Daskalogianni, C., Apcher, S., Candeias, M. M., Naski, N., Calvo, F. & Fahraeus, R.(2008). Gly-Ala repeats induce position and substrate specific regulation of 26S proteasome-dependent partial processing. J Biol Chem 283, 30090–30100.[CrossRef] [Google Scholar]
  36. Davison, A. J., Eberle, R., Ehlers, B., Hayward, G. S., McGeoch, D. J., Minson, A. C., Pellet, P. E., Roizman, B., Studdert, M. J. & Thiry, E.(2009). The order Herpesvirales. Arch Virol 154, 171–177.[CrossRef] [Google Scholar]
  37. Day, L., Chau, C. M., Nebozyhyn, M., Rennekamp, A. J., Showe, M. & Liberman, P. M.(2007). Chromatin profiling of Epstein–Barr virus latency control region. J Virol 81, 6389–6401.[CrossRef] [Google Scholar]
  38. DeWire, S. M. & Damania, B.(2005). The latency-associated nuclear antigen of rhesus monkey rhadinovirus inhibits replication through repression of ORF50/Rta transcriptional activation. J Virol 79, 3127–3138.[CrossRef] [Google Scholar]
  39. Dittmer, D., Lagunoff, M., Renne, R., Staskus, K., Haase, A. & Ganem, D.(1998). A cluster of latently expressed genes in Kaposi's sarcoma-associated herpesvirus. J Virol 72, 8309–8315. [Google Scholar]
  40. Duboise, S. M., Guo, J., Czajak, S., Desrosiers, R. C. & Jung, J. U.(1998). STP and TIP are essential for herpesvirus saimiri oncogenicity. J Virol 72, 1308–1313. [Google Scholar]
  41. Ensser, A., Pflanz, R. & Fleckenstein, B.(1997). Primary structure of the alcelaphine herpesvirus 1 genome. J Virol 71, 6517–6525. [Google Scholar]
  42. Ensser, A., Thurau, M., Wittmann, S. & Fickenscher, H.(2003). The genome of herpesvirus saimiri C488 which is capable of transforming human T cells. Virology 314, 471–487.[CrossRef] [Google Scholar]
  43. Falk, K., Gratama, J. W., Rowe, M., Zou, J. Z., Khanim, F., Young, L. S., Oosterveer, M. A. & Ernberg, I.(1995). The role of repetitive DNA sequences in the size variation of Epstein–Barr virus (EBV) nuclear antigens, and the identification of different EBV isolates using RFLP and PCR analysis. J Gen Virol 76, 779–790.[CrossRef] [Google Scholar]
  44. Feeney, K. M. & Parish, J. L.(2009). Targeting mitotic chromosomes: a conserved mechanism to ensure viral genome persistence. Proc Biol Sci 276, 1535–1544.[CrossRef] [Google Scholar]
  45. Fickenscher, H. & Fleckenstein, B.(2001).Herpesvirus saimiri. Philos Trans R Soc Lond B Biol Sci 356, 545–567.[CrossRef] [Google Scholar]
  46. Fickenscher, H., Biesinger, B., Knappe, A., Wittman, S. & Fleckenstein, B.(1996). Regulation of the herpesvirus saimiri oncogene stpC, similar to that of the T-cell activation genes, in growth transformed human T lymphocytes. J Virol 70, 6012–6019. [Google Scholar]
  47. Fickenscher, H., Bokel, C., Knappe, A., Biesinger, B., Meinl, E., Fleischer, B., Fleckenstein, B. & Broker, B. M.(1997). Functional phenotype of transformed human αβ and γδ T cells determined by different subgroup C strains of herpesvirus saimiri. J Virol 71, 2252–2263. [Google Scholar]
  48. Flano, E., Kim, I.-J., Woodland, D. & Blackman, M. A.(2002).γ-Herpesvirus latency is preferentially maintained in splenic germinal center and memory B cells. J Exp Med 196, 1363–1372.[CrossRef] [Google Scholar]
  49. Fogg, M. H., Kaur, A., Cho, Y.-G. & Wang, F.(2005). The CD8+ T-cell response to an Epstein–Barr virus-related gammaherpesvirus infecting rhesus macaques provides evidence for immune evasion by the EBNA1-homolgue. J Virol 79, 12681–12691.[CrossRef] [Google Scholar]
  50. Fowler, P., Marques, S., Simas, J. P. & Efstathiou, S.(2003). ORF73 of murine herpesvirus-68 is critical for the establishment and maintenance of latency. J Gen Virol 84, 3405–3416.[CrossRef] [Google Scholar]
  51. Ganem, D.(2007). Kaposi's sarcoma-associated herpesvirus. In Fields Virology, 5th edn, pp. 2847–2888. Edited by D. M. Knipe & P. M. Howley. Philadelphia, PA: Lippincott Williams & Wilkins.
  52. Gao, S.-J., Zhang, Y.-J., Deng, J.-H., Rabkin, C. S., Flore, O. & Jenson, H. B.(1999). Molecular polymorphism of Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) latent nuclear antigen: evidence for a large repertoire of viral genotypes and dual infection with different viral genotypes. J Infect Dis 180, 1466–1476.[CrossRef] [Google Scholar]
  53. Gao, J., Coulson, J. M., Whitehouse, A. & Blake, N.(2009). Reduction in RNA levels rather than retardation of translation is responsible for the inhibition of major histocompatibility complex class I antigen presentation by the glutamic acid-rich repeat of herpesvirus saimiri open reading frame 73. J Virol 83, 273–282.[CrossRef] [Google Scholar]
  54. Garneau, N. L., Wilusz, J. & Wilusz, C. J.(2007). The highways and byways of mRNA decay. Nat Rev Mol Cell Biol 8, 113–126.[CrossRef] [Google Scholar]
  55. Greensill, J., Sheldon, J. A., Renwick, N. M., Beer, B. E., Norley, S., Goudsmit, J. & Schulz, T. F.(2000). Two distinct gamma-2 herpesviruses in African green monkeys: a second gamma-2 herpesvirus lineage among old world primates? J Virol 74, 1572–1577.[CrossRef] [Google Scholar]
  56. Griffiths, R. & Whitehouse, A.(2007). Herpesvirus saimiri episomal persistence is maintained via interaction between open reading frame 73 and the cellular chromosome-associated protein MeCP2. J Virol 81, 4021–4032.[CrossRef] [Google Scholar]
  57. Griffiths, R., Harrison, S. M., Macnab, S. & Whitehouse, A.(2008). Mapping the minimal regions within the ORF73 protein required for herpesvirus saimiri episomal persistence. J Gen Virol 89, 2843–2850.[CrossRef] [Google Scholar]
  58. Hall, K. T., Giles, M. S., Goodwin, D. J., Calderwood, M. A., Carr, I. M., Stevenson, A. J., Markham, A. F. & Whitehouse, A.(2000). Analysis of gene expression in a human cell line stably transduced with herpesvirus saimiri. J Virol 74, 7331–7337.[CrossRef] [Google Scholar]
  59. Hansen, T. H. & Bouvier, M.(2009). MHC class I antigen presentation: learning from viral evasion. Nat Rev Immunol 9, 503–513.[CrossRef] [Google Scholar]
  60. Hart, J., Ackermann, M., Jayawardane, G., Russell, G., Haig, D. M., Reid, H. & Stewart, J. P.(2007). Complete sequence and analysis of the ovine herpesvirus 2 genome. J Gen Virol 88, 28–39.[CrossRef] [Google Scholar]
  61. Heessen, S., Leonchiks, A., Issaeva, N., Sharipo, A., Selivanova, G., Masucci, M. G. & Dantuma, N. P.(2002). Functional p53 chimeras containing the Epstein–Barr virus Gly-Ala repeat are protected from Mdm2- and HPV-E6-induced proteolysis. Proc Natl Acad Sci U S A 99, 1532–1537.[CrossRef] [Google Scholar]
  62. Heessen, S., Dantuma, N. P., Tessarz, P., Jellne, M. & Masucci, M. G.(2003). Inhibition of ubiquitin/proteasome-dependent proteolysis in Saccharomyces cerevisiae by a Gly-Ala repeat. FEBS Lett 555, 397–404.[CrossRef] [Google Scholar]
  63. Hochberg, D., Middeldorp, J. M., Catalina, M., Sullivan, J. L., Luzuriaga, K. & Thorley-Lawson, D. A.(2004). Demonstration of the Burkitt's lymphoma Epstein–Barr virus phenotype in dividing latently infected memory cells in vivo. Proc Natl Acad Sci U S A 101, 239–244.[CrossRef] [Google Scholar]
  64. Hoyt, M. A., Zich, J., Takeuchi, J., Zhang, M., Govaerts, C. & Coffino, P.(2006). Glycine-alanine repeats impair proper substrate unfolding by the proteasome. EMBO J 25, 1720–1729.[CrossRef] [Google Scholar]
  65. Hutchings, I. A., Tierney, R. J., Kelly, G. L., Stylianou, J., Rickinson, A. B. & Bell, A. I.(2006). Methylation status of the Epstein–Barr virus (EBV) BamHI W latent cycle promoter and promoter activity: analysis using novel EBV-positive Burkitt and lymphoblastoid cell lines. J Virol 80, 10700–10711.[CrossRef] [Google Scholar]
  66. Johannsen, E., Calderwood, M., Kang, M.-S., Zhao, B., Portal, D. & Kieff, E.(2009). Epstein–Barr virus latent infection nuclear proteins: genome maintenance and regulation of lymphocyte cell growth and survival. In DNA Tumor Viruses, pp. 317–353. Edited by B. Damania & J. M. Pipas. New York: Springer.
  67. Jung, J. U. & Desrosiers, R. C.(1991). Identification and characterization of the herpesvirus saimiri oncoprotein STP-C488. J Virol 65, 6953–6960. [Google Scholar]
  68. Jung, J. U., Trimble, J. J., King, N. W., Biesinger, B., Fleckenstein, B. W. & Desrosiers, R. C.(1991). Identification of transforming genes of subgroup A and C strains of Herpesvirus saimiri. Proc Natl Acad Sci U S A 88, 7051–7055.[CrossRef] [Google Scholar]
  69. Kapoor, P., Lavoie, B. D. & Frappier, L.(2005). EBP2 plays a key role in Epstein–Barr virus mitotic segregation and is regulated by aurora family kinases. Mol Cell Biol 25, 4934–4945.[CrossRef] [Google Scholar]
  70. Kaschka-Dierich, C., Werner, F. J., Bauer, I. & Fleckenstein, B.(1982). Structure of non-integrated, circular Herpesvirus saimiri and Herpesvirus ateles genomes in tumor cell lines and in vitro-transformed cells. J Virol 44, 295–310. [Google Scholar]
  71. Kedes, D. H., Lagunoff, M., Renne, R. & Ganem, D.(1997). Identification of the gene encoding the major latency-associated nuclear antigen of the Kaposi's sarcoma-associated herpesvirus. J Clin Invest 100, 2606–2610.[CrossRef] [Google Scholar]
  72. Kellam, P., Boshoff, C., Whitby, D., Matthews, S., Weiss, R. A. & Talbot, S. J.(1997). Identification of a major latent nuclear antigen, LNA-1, in the human herpesvirus 8 genome. J Hum Virol 1, 19–29. [Google Scholar]
  73. Khanna, R., Burrows, S. R., Kurilla, M. G., Jacob, C. A., Misko, I. S., Sculley, T. B., Kieff, E. & Moss, D. J.(1992). Localization of Epstein–Barr virus cytotoxic T cell epitopes using recombinant vaccinia: implications for vaccine development. J Exp Med 176, 169–176.[CrossRef] [Google Scholar]
  74. Kieff, E. & Rickinson, A. B.(2007). Epstein–Barr virus and its replication. In Fields Virology, 5th edn, pp. 2603–2654. Edited by D. M. Knipe & P. M. Howley. Philadelphia, PA: Lippincott Williams & Wilkins.
  75. Krasilnikova, M. M., Kireeva, M. L., Petrovic, V., Knijnikova, N., Kashlev, M. & Mirkin, S. M.(2007). Effects of Friedreich's ataxia (GAA) n .(TTC) n repeats on RNA synthesis and stability. Nucleic Acids Res 35, 1075–1084.[CrossRef] [Google Scholar]
  76. Kwun, H. J., Ramos da Silva, S., Shah, I. M., Blake, N., Moore, P. S. & Chang, Y.(2007). Kaposi's sarcoma-associated herpesvirus latency-associated nuclear antigen 1 mimics Epstein–Barr virus EBNA1 immune evasion through central repeat domain effects on protein processing. J Virol 81, 8225–8235.[CrossRef] [Google Scholar]
  77. Lacoste, V., Mauclere, P., Dubreuil, G., Lewis, J., Georges-Courbot, M.-C. & Gessain, A.(2000). KSHV-like herpesviruses in chimps and gorillas. Nature 407, 151–152.[CrossRef] [Google Scholar]
  78. Lacoste, V., Mauclere, P., Dubreuil, G., Lewis, J., Georges-Courbot, M.-C. & Gessain, A.(2001). A novel gamma 2-herpesvirus of the rhadinovirus 2 lineage in chimpanzees. Genome Res 11, 1511–1519.[CrossRef] [Google Scholar]
  79. Lee, S. P., Brooks, J. M., Al-Jarrah, H., Thomas, W. A., Haigh, T. A., Taylor, G. S., Humme, S., Schepers, A., Hammerschmidt, W. & other authors(2004). CD8 T cell recognition of endogenously expressed Epstein–Barr virus nuclear antigen 1. J Exp Med 199, 1409–1420.[CrossRef] [Google Scholar]
  80. Leen, A., Meij, P., Redchenko, I., Middeldorp, J., Bloemena, E., Rickinson, A. B. & Blake, N. W.(2001). Differential immunogenicity of Epstein–Barr virus latent-cycle proteins for human CD4+ T-helper 1 responses. J Virol 75, 8649–8659.[CrossRef] [Google Scholar]
  81. Levitskaya, J., Coram, M., Levitsky, V., Imreh, S., Steigerwald-Mullen, P. M., Klein, G., Kurilla, M. G. & Masucci, M. G.(1995). Inhibition of antigen processing by the internal repeat region of Epstein–Barr virus nuclear antigen-1. Nature 375, 685–688.[CrossRef] [Google Scholar]
  82. Levitskaya, J., Sharipo, A., Leonchikis, A., Ciechanover, A. & Masucci, M. G.(1997). Inhibition of ubiquitin/proteasome-dependent protein degradation by the Gly-Ala repeat domain of the Epstein–Barr virus nuclear antigen 1. Proc Natl Acad Sci U S A 94, 12616–12621.[CrossRef] [Google Scholar]
  83. Lindner, S. E. & Sugden, B.(2007). The plasmid replicon of Epstein–Barr virus: mechanistic insights into efficient, licensed, extrachromosomal replication in human cells. Plasmid 58, 1–12.[CrossRef] [Google Scholar]
  84. Lomonte, P., Bublot, M., van Santen, V., Keil, G. M., Pastoret, P. & Thiry, E.(1995). Analysis of bovine herpesvirus 4 genomic regions located outside the conserved gammaherpesvirus gene blocks. J Gen Virol 76, 1835–1841.[CrossRef] [Google Scholar]
  85. Mackay, L. K., Long, H. M., Brooks, J. M., Taylor, G. S., Leung, C. S., Chen, A., Wang, F. & Rickinson, A. B.(2009). T cell detection of a B-cell tropic virus infection: newly-synthesised versus mature viral proteins as antigen sources for CD4 and CD8 epitope display. PLoS Pathog 5, e1000699[CrossRef] [Google Scholar]
  86. Marechal, V., Dehee, A., Chikhi-Brachet, R., Piolot, T., Coppey-Moisan, M. & Nicolas, J. C.(1999). Mapping EBNA-1 domains involved in binding to metaphase chromosomes. J Virol 73, 4385–4392. [Google Scholar]
  87. Marques, S., Efstathiou, S., Smith, K. G., Haury, M. & Simas, J. P.(2003). Selective gene expression of latent murine gammaherpesvirus 68 in B lymphocytes. J Virol 77, 7308–7318.[CrossRef] [Google Scholar]
  88. Medveczky, P., Szomolanyi, E., Desrosiers, R. C. & Mulder, C.(1984). Classification of herpesvirus saimiri into three groups based on extreme variation in a DNA region required for oncogenicity. J Virol 52, 938–944. [Google Scholar]
  89. Medveczky, M. M., Szomolanyi, E., Hesselton, R., DeGrand, D., Geck, P. & Medveczky, P. G.(1989). Herpesvirus saimiri strains from three DNA subgroups have different oncogenic potentials in New Zealand white rabbits. J Virol 63, 3601–3611. [Google Scholar]
  90. Mesri, E. A., Cesarman, E., Arvanitakis, L., Rafii, S., Moore, M. A., Posnett, D. N., Knowles, D. M. & Asch, A. S.(1996). Human herpesvirus 8/Kaposi's sarcoma-associated herpesvirus is a new transmissible virus that infects B cells. J Exp Med 183, 2385–2390.[CrossRef] [Google Scholar]
  91. Moghaddam, A., Rosenzweig, M., Lee-Parritz, D., Annis, B., Johnson, R. P. & Wang, F.(1997). An animal model for acute and persistent Epstein–Barr virus infection. Science 276, 2030–2033.[CrossRef] [Google Scholar]
  92. Moorman, N. J., Willer, D. O. & Speck, S. H.(2003). The gammaherpesvirus 68 latency-associated nuclear antigen homolog is critical for the establishment of splenic latency. J Virol 77, 10295–10303.[CrossRef] [Google Scholar]
  93. Murray, R. J., Kurilla, M. G., Brooks, J. M., Thomas, W. A., Rowe, M., Kieff, E. & Rickinson, A. B.(1992). Identification of target antigens for the human cytotoxic T cell response to Epstein–Barr virus (EBV): implications for the immune control of EBV-positive malignancies. J Exp Med 176, 157–168.[CrossRef] [Google Scholar]
  94. Nash, A. A., Dutia, B. M., Stewart, J. P. & Davison, A. J.(2001). Natural history of murine γ-herpesvirus infection. Philos Trans R Soc Lond B Biol Sci 356, 569–579.[CrossRef] [Google Scholar]
  95. Nayyar, V. K., Shire, K. & Frappier, L.(2009). Mitotic chromosome interactions of Epstein–Barr nuclear antigen 1 (EBNA1) and human EBNA1-binding protein 2 (EBP2). J Cell Sci 122, 4341–4350.[CrossRef] [Google Scholar]
  96. Niederman, J. C., McCollum, R. W., Henle, G. & Henle, W.(1968). Infectious mononucleosis: clinical manifestations in relation to EB virus antibodies. JAMA 203, 205–209.[CrossRef] [Google Scholar]
  97. Ossevoort, M., Zaldumbide, A., te Velthuis, A. J. W., Melchers, M., Ressing, M. E., Wiertz, E. J. H. J. & Hoeben, R. C.(2007). The nested open reading frame in the Epstein–Barr virus nuclear antigen-1 mRNA encodes a protein capable of inhibiting antigen presentation in cis. Mol Immunol 44, 3588–3596.[CrossRef] [Google Scholar]
  98. Paludan, C., Schmid, D., Landthaler, M., Vockerodt, M., Kube, D., Tuschl, T. & Munz, C.(2005). Endogenous MHC class II processing of a viral nuclear antigen after autophagy. Science 307, 593–596.[CrossRef] [Google Scholar]
  99. Pamer, E. & Cresswell, P.(1998). Mechanisms of MHC class I-restricted antigen processing. Annu Rev Immunol 16, 323–358.[CrossRef] [Google Scholar]
  100. Pandolfo, M.(2002). The molecular basis of Friedreich ataxia. Adv Exp Med Biol 516, 99–118. [Google Scholar]
  101. Rainbow, L., Platt, G., Simpson, G., Sarid, R., Gao, S., Stoiber, H., Herrington, C., Moore, P. & Schulz, T.(1997). The 222- to 234-kilodalton latent nuclear antigen (LNA) of Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) is encoded by orf73 and is a component of the latency-associated nuclear antigen. J Virol 71, 5915–5921. [Google Scholar]
  102. Rawlins, D. R., Milman, G., Hayward, S. D. & Hayward, G. S.(1985). Sequence specific DNA binding of the Epstein–Barr virus nuclear antigen (EBNA-1) to clustered sites in the plasmid maintenance region. Cell 42, 859–868.[CrossRef] [Google Scholar]
  103. Reisman, D., Yates, J. & Sugden, B.(1985). A putative origin of replication of plasmids derived from Epstein–Barr virus is composed of two cis-acting components. Mol Cell Biol 5, 1822–1832. [Google Scholar]
  104. Renne, R., Lagunoff, M., Zhong, W. & Ganem, D.(1996). The size and conformation of Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) DNA in infected cells and virions. J Virol 70, 8151–8154. [Google Scholar]
  105. Rickinson, A. B. & Kieff, E.(2007). Epstein–Barr virus. In Fields Virology, 5th edn, pp. 2655–2700. Edited by D. M. Knipe & P. M. Howley. Philadelphia, PA: Lippincott Williams & Wilkins.
  106. Rickinson, A. B. & Moss, D. M.(1997). Human cytotoxic T lymphocyte responses to Epstein–Barr virus infection. Annu Rev Immunol 15, 405–431.[CrossRef] [Google Scholar]
  107. Rivailler, P., Cho, Y.-G. & Wang, F.(2002). Complete genomic sequence of an Epstein–Barr virus-related herpesvirus naturally infecting a New World primate: a defining point in the evolution of oncogenic lymphocryptoviruses. J Virol 76, 12055–12068.[CrossRef] [Google Scholar]
  108. Rivas, C., Thlick, A. E., Parravicini, C., Moore, P. S. & Chang, Y.(2001). Kaposi's sarcoma-associated herpesvirus LANA2 is a B-cell-specific latent viral protein that inhibits p53. J Virol 75, 429–438.[CrossRef] [Google Scholar]
  109. Roizman, B., Knipe, D. M. & Whitley, R. J.(2007). Herpes simplex viruses. In Fields Virology, 5th edn, pp. 2501–2601. Edited by D. M. Knipe & P. M. Howley. Philadelphia, PA: Lippincott Williams & Wilkins.
  110. Ruf, I. K., Moghaddam, A., Wang, F. & Sample, J.(1999). Mechanisms that regulate Epstein–Barr virus EBNA-1 gene transcription during restricted latency are conserved among lymphocryptoviruses of Old World primates. J Virol 73, 1980–1989. [Google Scholar]
  111. Russo, J. J., Bohenzky, R. A., Chien, M. C., Chen, J., Yan, M., Maddalena, D., Parry, J. P., Peruzzi, D., Edelman, I. S. & other authors(1996). Nucleotide sequence of the Kaposi sarcoma-associated herpesvirus (HHV8). Proc Natl Acad Sci U S A 93, 14862–14867.[CrossRef] [Google Scholar]
  112. Sadler, R., Wu, L., Forghani, B., Renne, R., Zhong, W., Herndier, B. & Ganem, D.(1999). A complex translational program generates multiple novel proteins from the latently expressed Kaposin (K12) locus of Kaposi's sarcoma-associated herpesvirus. J Virol 73, 5722–5730. [Google Scholar]
  113. Sample, J., Henson, E. B. D. & Sample, C.(1992). The Epstein–Barr virus nuclear protein 1 promoter active in type I latency is autoregulated. J Virol 66, 4654–4661. [Google Scholar]
  114. Schaefer, B. C., Strominger, J. L. & Speck, S. H.(1997). Host-cell-determined methylation of specific Epstein–Barr virus promoters regulates the choice between distinct viral latency programs. Mol Cell Biol 17, 364–377. [Google Scholar]
  115. Schultz, E. R., Rankin, G. W., Jr, Blanc, M. P., Raden, B. W., Tsai, C. C. & Rose, T. M.(2000). Characterization of two divergent lineages of macaque rhadinoviruses related to Kaposi's sarcoma-associated herpesvirus. J Virol 74, 4919–4928.[CrossRef] [Google Scholar]
  116. Searles, R. P., Berquam, E. P., Axthelm, M. K. & Wong, S. W.(1999). Sequence and genomic analysis of a rhesus macaque rhadinovirus with similarity to Kaposi's sarcoma-associated herpesvirus/human herpesvirus 8. J Virol 73, 3040–3053. [Google Scholar]
  117. Sears, J., Ujihara, M., Wong, S., Ott, C., Middeldorp, J. & Aiyar, A.(2004). The amino terminus of Epstein–Barr virus (EBV) nuclear antigen 1 contains AT hooks that facilitate the replication and partitioning of latent EBV genomes by tethering them to cellular chromosomes. J Virol 78, 11487–11505.[CrossRef] [Google Scholar]
  118. Sharipo, A., Imreh, M., Leonchiks, A., Imreh, S. & Masucci, M. G.(1998). A minimal glycine-alanine repeat prevents the interaction of ubiquitinated IκB α with the proteasome: a new mechanism for selective inhibition of proteolysis. Nat Med 4, 939–944.[CrossRef] [Google Scholar]
  119. Sinclair, J.(2008). Human cytomegalovirus: latency and reactivation in the myeloid lineage. J Clin Virol 41, 180–185.[CrossRef] [Google Scholar]
  120. Soragni, E., Herman, D., Dent, S. Y. R., Gottesfeld, J. M., Well, R. D. & Napierala, M.(2008). Long intronic GAA.TAA repeats induce epigenetic changes and reporter gene silencing in a molecular model of Friedreich ataxia. Nucleic Acids Res 36, 6056–6065.[CrossRef] [Google Scholar]
  121. Soulier, J., Grollet, L., Oksenhendler, E., Cacoub, P., Cazals-Hatem, D., Babinet, P., d'Agay, M. F., Clauvel, J. P., Raphael, M. & other authors(1995). Kaposi's sarcoma-associated herpesvirus-like DNA sequences in multicentric Castleman's disease. Blood 86, 1276–1280. [Google Scholar]
  122. Stevenson, P. G.(2004). Immune evasion by gamma-herpesviruses. Curr Opin Immunol 16, 456–462.[CrossRef] [Google Scholar]
  123. Stuber, G., Dillner, J., Modrow, S., Wolf, H., Szekely, L., Klein, G. & Klein, E.(1995). HLA-A0201 and HLA-B7 binding peptides in the EBV-encoded EBNA-1, EBAN-2 and BZLF-1 proteins detected in the MHC class I stabilization assay. Low proportion of binding motifs for several HLA class I alleles in EBNA-1. Int Immunol 7, 653–663.[CrossRef] [Google Scholar]
  124. Subklewe, M., Chahroudi, A., Bickman, K., Larsson, M., Kurill, M. G., Bhardwaj, N. & Steinman, R. M.(1999). Presentation of Epstein–Barr virus latency antigens to CD8+, interferon-γ-secreting, T lymphocytes. Eur J Immunol 29, 3995–4001.[CrossRef] [Google Scholar]
  125. Talbot, S. J., Weiss, R. A., Kellam, P. & Boshoff, C.(1999). Transcriptional analysis of human herpesvirus-8 open reading frames 71, 72, 73, K14, and 74 in a primary effusion lymphoma cell line. Virology 257, 84–94.[CrossRef] [Google Scholar]
  126. Telford, E. A. R., Watson, M. S., Aird, H. C., Perry, J. & Davison, A. J.(1995). The DNA sequence of equine herpesvirus 2. J Mol Biol 249, 520–528.[CrossRef] [Google Scholar]
  127. Tellam, J., Connolly, G., Green, K. J., Miles, J. J., Moss, D. J., Burrows, S. R. & Khanna, R.(2004). Endogenous presentation of CD8+ T cell epitopes from Epstein–Barr virus-encoded nuclear antigen 1. J Exp Med 199, 1421–1431.[CrossRef] [Google Scholar]
  128. Tellam, J., Fogg, M., Rist, M., Connolly, G., Tscharke, D. C., Webb, N., Heslop, L., Wang, F. & Khanna, R.(2007a). Influence of translation efficiency of homologous viral proteins on the endogenous presentation of CD8+ T cell epitopes. J Exp Med 204, 525–532.[CrossRef] [Google Scholar]
  129. Tellam, J., Rist, M., Connolly, G., Webb, N., Fazou, C., Wang, F. & Khanna, R.(2007b). Translation efficiency of EBNA1 encoded by lymphocryptoviruses influences endogenous presentation of CD8+ T cell epitopes. Eur J Immunol 37, 328–337.[CrossRef] [Google Scholar]
  130. Tellam, J., Smith, C., Rist, M., Webb, N., Cooper, L., Vuocolo, T., Connolly, G., Tscharke, D. C., Devoy, M. P. & Khanna, R.(2008). Regulation of protein translation through mRNA structure influences MHC class I loading and T cell recognition. Proc Natl Acad Sci U S A 105, 9319–9324.[CrossRef] [Google Scholar]
  131. Thome, M., Schneider, P., Hofmann, K., Fickenscher, H., Meinl, E., Neipel, C., Mattmann, C., Burns, K., Bodmer, J. L. & other authors(1997). Viral FLICE-inhibitory proteins (FLIPs) prevent apoptosis induced by death receptors. Nature 386, 517–521.[CrossRef] [Google Scholar]
  132. Thorley-Lawson, D. A. & Gross, A.(2004). Persistence of the Epstein–Barr virus and the origins of associated lymphomas. N Engl J Med 350, 1328–1337.[CrossRef] [Google Scholar]
  133. Trivedi, P., Masucci, M. G., Winberg, G. & Klein, G.(1991). The Epstein–Barr virus-encoded membrane protein LMP1 but not the nuclear antigen EBNA-1 induces rejection of transfected murine mammary carcinoma cells. Int J Cancer 48, 794–800.[CrossRef] [Google Scholar]
  134. Verma, S. C. & Robertson, E. S.(2003). ORF73 of herpesvirus saimiri strain C488 tethers the viral genome to metaphase chromosomes and binds to cis-acting DNA sequences in the terminal repeats. J Virol 77, 12494–12506.[CrossRef] [Google Scholar]
  135. Virgin, H. W., IV, Latreille, P., Wamsley, P., Hallsworth, K., Weck, K. E., Dal Canto, A. J. & Speck, S. H.(1997). Complete sequence and genomic analysis of murine gammaherpesvirus 68. J Virol 71, 5894–5904. [Google Scholar]
  136. Virgin, H. W., IV, Presti, R. M., Li, X.-Y., Liu, C. & Speck, S. H.(1999). Three distinct regions of the murine gammaherpesvirus 68 genome are transcriptionally active in latently infected mice. J Virol 73, 2321–2332. [Google Scholar]
  137. Voo, K. S., Fu, T., Wang, H. Y., Tellam, J., Heslop, H. E., Brenner, M. K., Rooney, C. M. & Wang, R.-F.(2004). Evidence for the presentation of major histocompatibility complex class I-restricted Epstein–Barr virus nuclear antigen 1 peptides to CD8+ T lymphocytes. J Exp Med 199, 459–470.[CrossRef] [Google Scholar]
  138. Wang, F., Rivailler, P., Rao, P. & Cho, Y.-G.(2001). Simian homologues of Epstein–Barr virus. Philos Trans R Soc Lond B Biol Sci 356, 489–497.[CrossRef] [Google Scholar]
  139. Wen, K. W., Dittmer, D. P. & Damania, B.(2009). Disruption of LANA in rhesus rhadinovirus generates a highly lytic recombinant virus. J Virol 83, 9786–9802.[CrossRef] [Google Scholar]
  140. Werner, F. J., Bornkamn, G. W. & Fleckenstein, B.(1977). Episomal viral DNA in a Herpesvirus saimiri-transformed lymphoid cell line. J Virol 22, 794–803. [Google Scholar]
  141. Willer, D. O. & Speck, S. H.(2003). Long-term latent murine gammaherpesvirus 68 infection is preferentially found within the surface immunoglobulin D-negative subset of splenic B cells in vivo. J Virol 77, 8310–8321.[CrossRef] [Google Scholar]
  142. Woodberry, T., Suscovich, T. J., Henry, L. M., Martin, J. N., Dollard, S., O'Connor, P. G., Davis, J. K., Osmond, D., Lee, T.-H. & other authors(2005). Impact of Kaposi's sarcoma-associated herpesvirus (KSHV) burden and HIV coinfection on the detection of T cell responses to KSHV ORF73 and ORF65 proteins. J Infect Dis 192, 622–629.[CrossRef] [Google Scholar]
  143. Yates, J. L., Warren, N. & Sugden, B.(1985). Stable replication of plasmids derived from Epstein–Barr virus in various mammalian cells. Nature 313, 812–815.[CrossRef] [Google Scholar]
  144. Yates, J. L., Camiolo, S. M., Ali, S. & Ying, A.(1996). Comparison of the EBNA-1 proteins of Epstein–Barr virus and herpesvirus papio in sequence and function. Virology 222, 1–13.[CrossRef] [Google Scholar]
  145. Ye, F.-C., Zhou, F.-C., Yoo, S. M., Xie, J.-P., Browning, P. J. & Gao, S.-J.(2004). Disruption of Kaposi's sarcoma-associated herpesvirus latent nuclear antigen leads to abortive episome persistence. J Virol 78, 11121–11129.[CrossRef] [Google Scholar]
  146. Yewdell, J. W.(2007). Plumbing the sources of endogenous MHC class I peptide ligands. Curr Opin Immunol 19, 79–86.[CrossRef] [Google Scholar]
  147. Yin, Y., Manoury, B. & Fahraeus, R.(2003). Self-inhibition of synthesis and antigen presentation by the Epstein–Barr virus-encoded EBNA1. Science 301, 1371–1374.[CrossRef] [Google Scholar]
  148. Yoshioka, M., Crum, M. M. & Sample, J. T.(2008). Autorepression of Epstein–Barr virus nuclear antigen 1 expression by inhibition of pre-mRNA processing. J Virol 82, 1679–1687.[CrossRef] [Google Scholar]
  149. Zaldumbide, A., Ossevoort, M., Wiertz, E. J. H. J. & Hoeben, R. C.(2007).In cis inhibition of antigen processing by the latency-associated nuclear antigen I of Kaposi sarcoma herpes virus. Mol Immunol 44, 1352–1360.[CrossRef] [Google Scholar]

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error