1887

Abstract

This study reports the phylogeny, selection pressure, genotype replacement and molecular clock analyses of many previously unstudied dengue type 2 virus (DENV-2) strains, isolated in India over a time span of almost 50 years (1956–2005). Analysis of complete envelope (E) gene sequences of 37 strains of DENV-2 from India, together with globally representative strains, revealed that the American genotype, which circulated predominantly in India during the pre-1971 period, was then replaced by the Cosmopolitan genotype. Two previously unreported amino acid residues, one in the American (402I) and one in the Cosmopolitan (126K) genotypes, known to be involved functionally in the cellular tropism of the virus, were shown to be under positive selection pressure. The rate of nucleotide substitution estimated for DENV-2 was 6.5×10 substitutions per site year, which is comparable with earlier estimates. The time to the most recent common ancestor of the pre-1971 Indian strains and the American genotype was estimated to be between 73 and 100 years (1905–1932), which correlates with the historical record of traffic between India and South America and suggests transportation of the virus from the Americas. Post-1971 Indian isolates formed a separate subclade within the Cosmopolitan genotype. The estimated time to the most recent common ancestor of the Indian Cosmopolitan strains was about 47 years, with further estimates indicating the migration of DENV-2 from India to countries across the Indian ocean between 1955 and 1966. Overall, the present study increases our understanding of the events leading to the establishment and dispersal of the two genotypes in India.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.017954-0
2010-03-01
2019-11-17
Loading full text...

Full text loading...

/deliver/fulltext/jgv/91/3/707.html?itemId=/content/journal/jgv/10.1099/vir.0.017954-0&mimeType=html&fmt=ahah

References

  1. Arunachalam, N., Murty, U. S., Kabilan, L., Balasubramanian, A., Thenmozhi, V., Narahari, D., Ravi, A. & Satyanarayana, K. ( 2004; ). Studies on dengue in rural areas of Kurnool District, Andhra Pradesh, India. J Am Mosq Control Assoc 20, 87–90.
    [Google Scholar]
  2. Bennett, S. N., Holmes, E. C., Chirivella, M., Rodriguez, D. M., Beltran, M., Vorndam, V., Gubler, D. J. & McMillan, W. O. ( 2006; ). Molecular evolution of dengue 2 virus in Puerto Rico: positive selection in the viral envelope accompanies clade reintroduction. J Gen Virol 87, 885–893.[CrossRef]
    [Google Scholar]
  3. Bray, M., Ruhe, M., Tokimatsu, I. & Lai, C. J. ( 1998; ). Genetic determinants responsible for acquisition of dengue type 2 virus mouse neurovirulence. J Virol 72, 1647–1651.
    [Google Scholar]
  4. Chambers, T. J., Hahn, C. S., Galler, R. & Rice, C. M. ( 1990; ). Flavivirus genome organization, expression and replication. Annu Rev Microbiol 44, 649–688.[CrossRef]
    [Google Scholar]
  5. Chareonsook, O., Foy, H. M., Teeraratkul, A. & Silarug, N. ( 1999; ). Changing epidemiology of dengue hemorrhagic fever in Thailand. Epidemiol Infect 122, 161–166.[CrossRef]
    [Google Scholar]
  6. Chaturvedi, U. C. ( 2006; ). The curse of dengue. Indian J Med Res 124, 467–470.
    [Google Scholar]
  7. Chaturvedi, U. C. & Shrivastava, R. ( 2004; ). Dengue hemorrhagic fever: a global challenge. Indian J Med Microbiol 22, 5–6.
    [Google Scholar]
  8. Chickrie, R. ( 2003; ). The Afghan Muslims of Guyana and Suriname. http://www.guyana.org/features/afghanguyanese_muslim.html.
  9. Cologna, R. & Rico-Hesse, R. ( 2003; ). American genotype structures decrease dengue virus output from human monocytes and dendritic cells. J Virol 77, 3929–3938.[CrossRef]
    [Google Scholar]
  10. Cologna, R., Armstrong, P. M. & Rico-Hesse, R. ( 2005; ). Selection for virulent dengue viruses occurs in humans and mosquitoes. J Virol 79, 853–859.[CrossRef]
    [Google Scholar]
  11. Dar, L., Broor, S., Sengupta, S., Xess, I. & Seth, P. ( 1999; ). The first major outbreak of dengue haemorrhagic fever in Delhi, India. Emerg Infect Dis 5, 589–590.[CrossRef]
    [Google Scholar]
  12. Dash, P. K., Parida, M. M., Saxena, P., Kumar, M., Rai, A., Pasha, S. T. & Jana, A. M. ( 2004; ). Emergence and continued circulation of dengue-2 (genotype IV) virus strains in northern India. J Med Virol 74, 314–322.[CrossRef]
    [Google Scholar]
  13. Diallo, M., Ba, Y., Faye, O., Soumare, M., Dia, I. & Sall, A. ( 2008; ). Vector competence of Aedes aegypti populations from Senegal for sylvatic and epidemic dengue 2 virus isolated in West Africa. Trans R Soc Trop Med Hyg 102, 493–498.[CrossRef]
    [Google Scholar]
  14. Diamond, M. S., Edgil, D., Roberts, T. G., Lu, B. & Harris, E. ( 2000; ). Infection of human cells by dengue virus is modulated by different cell types and viral strains. J Virol 74, 7814–7823.[CrossRef]
    [Google Scholar]
  15. Drummond, A. J. & Rambaut, A. ( 2007; ). beast: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7, 214 [CrossRef]
    [Google Scholar]
  16. Drummond, A. J., Ho, S. Y. W., Phillips, M. J. & Rambaut, A. ( 2006; ). Relaxed phylogenetics and dating with confidence. PLoS Biol 4, e88 [CrossRef]
    [Google Scholar]
  17. Eram, S., Setyabudi, Y., Sadono, T. I., Sutrisno, D. S., Gubler, D. J. & Sulianti Saroso, J. ( 1979; ). Epidemic dengue hemorrhagic fever in rural Indonesia. II. Clinical studies. Am J Trop Med Hyg 28, 711–716.
    [Google Scholar]
  18. Fulmali, P. V., Walimbe, A. & Mahadev, P. V. ( 2008; ). Spread, establishment and prevalence of dengue vector Aedes aegypti (L.) in Konkan region, Maharashtra, India. Indian J Med Res 127, 589–601.
    [Google Scholar]
  19. Gratz, N. G. ( 2004; ). Critical review of the vector status of Aedes albopictus. Med Vet Entomol 18, 215–227.[CrossRef]
    [Google Scholar]
  20. Gritsun, T. S., Holmes, E. C. & Gould, E. A. ( 1995; ). Analysis of flavivirus envelope proteins reveals variable domains that reflects their antigenicity and may determine their pathogenesis. Virus Res 35, 307–321.[CrossRef]
    [Google Scholar]
  21. Hayes, C. G., Phillips, I. A., Callahan, J. D., Griebenow, W. F., Hyams, K. C., Wu, S. J. & Watts, D. M. ( 1996; ). The epidemiology of dengue virus infection among urban, jungle, and rural populations in the Amazon region of Peru. Am J Trop Med Hyg 55, 459–463.
    [Google Scholar]
  22. Holmes, E. C. & Burch, S. S. ( 2000; ). The causes and consequences of genetic variation in dengue virus. Trends Microbiol 8, 74–77.[CrossRef]
    [Google Scholar]
  23. Holmes, E. C. & Twiddy, S. S. ( 2003; ). The origin, emergence and evolutionary genetics of dengue virus. Infect Genet Evol 3, 19–28.[CrossRef]
    [Google Scholar]
  24. Innis, B. L., Thriawuth, V. & Hemachudha, C. ( 1989; ). Identification of continuous epitopes of envelope glycoprotein of dengue type 2 virus. Am J Trop Med Hyg 40, 676–687.
    [Google Scholar]
  25. Kumar, A., Sharma, S. K., Padbidri, V. S., Thakare, J. P., Jain, D. C. & Datta, K. K. ( 2001; ). An outbreak of dengue fever in rural areas of northern India. J Commun Dis 33, 274–281.
    [Google Scholar]
  26. Kumar, S., Tamura, K. & Nei, M. ( 2004; ). mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5, 150–163.[CrossRef]
    [Google Scholar]
  27. Leitmeyer, K. C., Vaughn, D. W., Watts, D. M., Salas, R., De Chacon, I. V., Ramos, C. & Rico-Hesse, R. ( 1999; ). Dengue virus structural differences that correlate with pathogenesis. J Virol 73, 4738–4747.
    [Google Scholar]
  28. Mackerras, M. ( 1946; ). Transmission of dengue fever by Aedes (Stegomyia) scutellaris walk in New Guinea. Trans R Soc Trop Med Hyg 40, 295–312.[CrossRef]
    [Google Scholar]
  29. Mahadev, P. V., Kollali, V. V., Rawal, M. L., Pujara, P. K., Shaikh, B. H., Ilkal, M. A., Pathak, V., Dhanda, V., Rodrigues, F. M. & Banerjee, K. ( 1993; ). Dengue in Gujarat state, India during 1988 and 1989. Indian J Med Res 97, 135–144.
    [Google Scholar]
  30. Mehendale, S. M., Risbud, A. R., Rao, J. A. & Banerjee, K. ( 1991; ). Outbreak of dengue fever in rural areas of Parbhani district of Maharashtra, India. Indian J Med Res 93, 6–11.
    [Google Scholar]
  31. Myat Thu, H., Lowry, K., Jiang, L., Hlaing, T., Holmes, E. C. & Aaskov, J. ( 2005; ). Lineage extinction and replacement in dengue type 1 virus populations are due to stochastic events rather than to natural selection. Virology 336, 163–172.[CrossRef]
    [Google Scholar]
  32. Parida, M. M., Dash, P. K., Upadhyay, C., Saxena, P. & Jana, A. M. ( 2002; ). Serological and virological investigation of an outbreak of dengue fever in Gwalior, India. Indian J Med Res 116, 248–254.
    [Google Scholar]
  33. Pond, S. L. & Frost, S. D. ( 2005; ). Datamonkey: rapid detection of selective pressure on individual sites of codon alignments. Bioinformatics 21, 2531–2533.[CrossRef]
    [Google Scholar]
  34. Posada, D. & Crandall, K. A. ( 1998; ). modeltest: testing the model of DNA substitution. Bioinformatics 14, 817–818.[CrossRef]
    [Google Scholar]
  35. Rambaut, A. & Drummond, A. ( 2007; ). Tracer version 1.4. University of Oxford, UK. http://evolve.zoo.ox.ac.uk.
  36. Rey, F. A., Heinz, F. X., Mandl, C., Kunz, C. & Harrison, S. C. ( 1995; ). The envelope glycoprotein from tick-borne encephalitis virus at 2 Å resolution. Nature 375, 291–298.[CrossRef]
    [Google Scholar]
  37. Rico-Hesse, R. ( 1990; ). Molecular evolution and distribution of dengue viruses type 1 and 2 in nature. Virology 174, 479–493.[CrossRef]
    [Google Scholar]
  38. Rico-Hesse, R., Harrison, L. M., Salas, R. A., Tovar, D., Nisalak, A., Ramos, C., Boshell, J., de Mesa, M. T., Nogueira, R. M. & da Rosa, A. T. ( 1997; ). Origins of dengue type 2 viruses associated with increased pathogenicity in the Americas. Virology 230, 244–251.[CrossRef]
    [Google Scholar]
  39. Roehrig, J. T., Risi, P. A., Brubaker, J. R., Hunt, A. R., Beaty, B. J., Trent, D. W. & Mathews, J. H. ( 1994; ). T-helper cell epitopes on the E-glycoprotein of dengue 2 Jamaica virus. Virology 198, 31–38.[CrossRef]
    [Google Scholar]
  40. Ronquist, F. & Huelsenbeck, J. P. ( 2003; ). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574.[CrossRef]
    [Google Scholar]
  41. Rosen, L., Rozevoom, L. E., Sweet, B. H. & Sabin, A. B. ( 1954; ). The transmission of dengue by Aedes polynesiensis marks. Am J Trop Med Hyg 3, 878–882.
    [Google Scholar]
  42. Sabin, A. B. ( 1952; ). Research on dengue during World War II. Am J Trop Med Hyg 1, 30–50.
    [Google Scholar]
  43. Self, L. S. ( 1984; ). Vector introductions associated with disease outbreaks in the western Pacific Region. Dengue Newslett 10, 50–51.
    [Google Scholar]
  44. Singh, U. B. & Seth, P. ( 2001; ). Use of nucleotide sequencing of the genomic cDNA fragments of the capsid/premembrane junction region for molecular epidemiology of dengue type 2 viruses. Southeast Asian J Trop Med Public Health 32, 326–335.
    [Google Scholar]
  45. Singh, U. B., Maitra, A., Baroor, S., Rai, A., Pasha, S. T. & Seth, P. ( 1999; ). Partial nucleotide sequencing and molecular evolution of epidemic causing dengue 2 strains. J Infect Dis 180, 959–965.[CrossRef]
    [Google Scholar]
  46. Sittisombut, N., Sistayanarain, A., Cardosa, M. J., Salminen, M., Damrongdachakul, S., Kalayanarooj, S., Rojanasuphot, S., Supawadee, J. & Maneekarn, N. ( 1997; ). Possible occurrence of a genetic bottleneck in dengue serotype 2 viruses between the 1980 and 1987 epidemic seasons in Bangkok, Thailand. Am J Trop Med Hyg 57, 100–108.
    [Google Scholar]
  47. Song, M., Wang, B., Liu, J. & Gratz, N. ( 2003; ). Insect vectors and rodents arriving in China aboard international transport. J Travel Med 10, 241–244.
    [Google Scholar]
  48. Suchard, M. A., Weiss, R. E. & Sinsheimer, J. S. ( 2001; ). Bayesian selection of continuous-time Markov chain evolutionary models. Mol Biol Evol 18, 1001–1013.[CrossRef]
    [Google Scholar]
  49. Sulianti, S. J. ( 1978; ). Dengue hemorrhagic fever in Indonesia: an epidemiological review. Asian J Infect Dis 2, 7–9.
    [Google Scholar]
  50. Swofford, D. L. ( 2003; ). paup*: phylogenetic analysis using parsimony (*and other methods), version 4. Sunderland, MA: Sinauer Associates.
  51. Tewari, S. C., Thenmozhi, V., Katholi, C. R., Manavalan, R., Munirathinam, A. & Gajanana, A. ( 2004; ). Dengue vector prevalence and virus infection in a rural area in south India. Trop Med Int Health 9, 499–507.[CrossRef]
    [Google Scholar]
  52. Twiddy, S. S., Farrar, J. J., Vinh, C. N., Wills, B., Gould, E., Gustin, T., Lloyd, G. & Holmes, E. C. ( 2002a; ). Phylogenetic relationships and differential selection pressures among genotypes of dengue 2 virus. Virology 298, 63–72.[CrossRef]
    [Google Scholar]
  53. Twiddy, S. S., Woelk, C. H. & Holmes, E. C. ( 2002b; ). Phylogenetic evidence for adaptive evolution of dengue viruses in nature. J Gen Virol 83, 1679–1689.
    [Google Scholar]
  54. Twiddy, S. S., Holmes, E. C. & Rambaut, A. ( 2003; ). Inferring the rate and time scale of dengue virus evolution. Mol Biol Evol 20, 122–129.[CrossRef]
    [Google Scholar]
  55. Vasilakis, N., Holmes, E. C., Fokam, E. B., Faye, O., Diallo, M., Sall, A. A. & Weaver, S. C. ( 2007; ). Evolutionary processes among sylvatic dengue-2 viruses. J Virol 81, 9591–9595.[CrossRef]
    [Google Scholar]
  56. Vasilakis, N., Deardorff, E. R., Kenney,, J. L., Rossi, S. L., Hanley, K. A. & Weaver, S. C. ( 2009; ). Mosquitoes put the brake on arbovirus evolution: experimental evolution reveals slower mutation accumulation in mosquito than vertebrate cells. PLoS Pathog 5, e1000467 [CrossRef]
    [Google Scholar]
  57. Wang, E., Ni, H., Xu, R., Barrett, A. D., Watowich, S. J., Gubler, D. J. & Weaver, S. C. ( 2000; ). Evolutionary relationships of endemic/epidemic and sylvatic dengue viruses. J Virol 74, 3227–3234.[CrossRef]
    [Google Scholar]
  58. WHO ( 2002; ). Fact Sheet: Dengue and Dengue Haemorrhagic Fever. Geneva: World Health Organization.
  59. Wittke, V., Robb, T. E., Thu, H. M., Nimmannitya, S., Kalayanrooj, S., Vaughn, D. W., Endy, T. P., Holmes, E. C. & Aaskov, J. G. ( 2002; ). Extinction and rapid emergence of strains of dengue 3 virus during an interepidemic period. Virology 301, 148–156.[CrossRef]
    [Google Scholar]
  60. Xu, G., Dong, H., Shi, N., Liu, S., Zhou, A., Cheng, Z., Chen, G., Liu, J., Fang, T. & other authors ( 2007; ). An outbreak of dengue virus serotype 1 infection in Cixi, Ningbo, People's Republic of China, 2004, associated with a traveler from Thailand and high density of Aedes albopictus. Am J Trop Med Hyg 76, 1182–1188.
    [Google Scholar]
  61. Zanotto, P. M., Gould, E. A., Gao, G. F., Harvey, P. H. & Holmes, E. C. ( 1996; ). Population dynamics of flaviviruses revealed by molecular phylogenies. Proc Natl Acad Sci U S A 93, 548–553.[CrossRef]
    [Google Scholar]
  62. Zeller, H. G. ( 1998; ). Dengue, arbovirus and migrations in the Indian Ocean. Bull Soc Pathol Exot 91, 56–60.
    [Google Scholar]
  63. Zhang, C., Mammen, M. P., Jr, Chinnawirotpisan, P., Klungthong, C., Rodpradit, P., Monkongdee, P., Nimmannitya, S., Kalayanarooj, S. & Holmes, E. C. ( 2005; ). Clade replacements in dengue virus serotypes 1 and 3 are associated with changing serotype prevalence. J Virol 79, 15123–15130.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.017954-0
Loading
/content/journal/jgv/10.1099/vir.0.017954-0
Loading

Data & Media loading...

Supplements

vol. , part 3, pp. 707–720

DENV-2 strains of Indian origin sequenced as part of this study.

Primers used for amplification and sequencing of the E gene of DENV-2.

Additional DENV-2 E gene sequences (from GenBank) used in this study.

[ Single PDF file] (100 KB)



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error