1887

Abstract

Acyclovir (ACV)-resistant herpes simplex virus type 1 (HSV-1) causes severe diseases in immunocompromised patients, so identification of new therapies is needed. Interferons (IFNs) are used to treat several other viral infections in the clinic, and IFN- and IFN- are known to cooperatively reduce wild-type HSV-1 replication in the corneas of immunocompetent mice. Because IFN- has been shown to exert an antiviral effect mostly through T cells, whether combined IFN treatment can still inhibit ACV-resistant HSV-1 replication, especially in immunocompromised hosts, is unknown. The present study evaluated the efficacy of combined IFN treatment on ACV-resistant HSV-1 mutants. results showed that IFN- acted synergistically with IFN- to inhibit HSV-1 replication in both human and mouse cell lines. Some ACV-resistant mutants were actually hypersensitive to combined IFN treatment. results showed that topical treatment with a low dose of IFN- plus IFN- (200 U each) on mouse corneas efficiently reduced the viral loads by up to 4, 4 and 3 logs, respectively, in the eyes, trigeminal ganglia and brainstems of wild-type and also immunocompromised nude mice infected or co-infected with ACV-resistant HSV-1 in a manner independent of T cells. A highly efficient reduction in HSV acute replication by combined IFN treatment led to a dramatic decrease in subsequent virus reactivation from neural tissues, trigeminal ganglia, brainstems and spinal cords of latently infected mice. Thus, a combination of IFN- and IFN- could be a potential treatment for ACV-resistant HSV-1 in immunocompromised patients.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.016964-0
2010-03-01
2019-11-17
Loading full text...

Full text loading...

/deliver/fulltext/jgv/91/3/591.html?itemId=/content/journal/jgv/10.1099/vir.0.016964-0&mimeType=html&fmt=ahah

References

  1. Adler, H., Beland, J. L., Del-Pan, N. C., Kobzik, L., Sobel, R. A. & Rimm, I. J. ( 1999; ). In the absence of T cells, natural killer cells protect from mortality due to HSV-1 encephalitis. J Neuroimmunol 93, 208–213.[CrossRef]
    [Google Scholar]
  2. Al-Khatib, K., Williams, B. R., Silverman, R. H., Halford, W. & Carr, D. J. ( 2004; ). Distinctive roles for 2′,5′-oligoadenylate synthetases and double-stranded RNA-dependent protein kinase R in the in vivo antiviral effect of an adenoviral vector expressing murine IFN-β. J Immunol 172, 5638–5647.[CrossRef]
    [Google Scholar]
  3. Biron, C. A., Nguyen, K. B., Pien, G. C., Cousens, L. P. & Salazar-Mather, T. P. ( 1999; ). Natural killer cells in antiviral defense: function and regulation by innate cytokines. Annu Rev Immunol 17, 189–220.[CrossRef]
    [Google Scholar]
  4. Casrouge, A., Zhang, S. Y., Eidenschenk, C., Jouanguy, E., Puel, A., Yang, K., Alcais, A., Picard, C., Mahfoufi, N. & other authors ( 2006; ). Herpes simplex virus encephalitis in human UNC-93B deficiency. Science 314, 308–312.[CrossRef]
    [Google Scholar]
  5. Cheeseman, S. H., Rubin, R. H., Stewart, J. A., Tolkoff-Rubin, N. E., Cosimi, A. B., Cantell, K., Gilbert, J., Winkle, S., Herrin, J. T. & other authors ( 1979; ). Controlled clinical trial of prophylactic human-leukocyte interferon in renal transplantation. Effects on cytomegalovirus and herpes simplex virus infections. N Engl J Med 300, 1345–1349.[CrossRef]
    [Google Scholar]
  6. Chen, S. H., Lin, Y. W., Griffiths, A., Huang, W. Y. & Chen, S. H. ( 2006a; ). Competition and complementation between thymidine kinase-negative and wild-type herpes simplex virus during co-infection of mouse trigeminal ganglia. J Gen Virol 87, 3495–3502.[CrossRef]
    [Google Scholar]
  7. Chen, S. H., Yao, H. W., Huang, W. Y., Hsu, K. S., Lei, H. Y., Shiau, A. L. & Chen, S. H. ( 2006b; ). Efficient reactivation of latent herpes simplex virus from mouse central nervous system tissues. J Virol 80, 12387–12392.[CrossRef]
    [Google Scholar]
  8. Cheng, H., Tumpey, T. M., Staats, H. F., van Rooijen, N., Oakes, J. E. & Lausch, R. N. ( 2000; ). Role of macrophages in restricting herpes simplex virus type 1 growth after ocular infection. Invest Ophthalmol Vis Sci 41, 1402–1409.
    [Google Scholar]
  9. Chou, J., Chen, J. J., Gross, M. & Roizman, B. ( 1995; ). Association of a M r 90,000 phosphoprotein with protein kinase PKR in cells exhibiting enhanced phosphorylation of translation initiation factor eIF-2α and premature shutoff of protein synthesis after infection with γ 134.5 mutants of herpes simplex virus 1. Proc Natl Acad Sci U S A 92, 10516–10520.[CrossRef]
    [Google Scholar]
  10. Christophers, J., Clayton, J., Craske, J., Ward, R., Collins, P., Trowbridge, M. & Darby, G. ( 1998; ). Survey of resistance of herpes simplex virus to acyclovir in northwest England. Antimicrob Agents Chemother 42, 868–872.
    [Google Scholar]
  11. Coen, D. M. & Schaffer, P. A. ( 2003; ). Antiherpesvirus drugs: a promising spectrum of new drugs and drug targets. Nat Rev Drug Discov 2, 278–288.[CrossRef]
    [Google Scholar]
  12. Coen, D. M., Kosz-Vnenchak, M., Jacobson, J. G., Leib, D. A., Bogard, C. L., Schaffer, P. A., Tyler, K. L. & Knipe, D. M. ( 1989; ). Thymidine kinase-negative herpes simplex virus mutants establish latency in mouse trigeminal ganglia but do not reactivate. Proc Natl Acad Sci U S A 86, 4736–4740.[CrossRef]
    [Google Scholar]
  13. Corey, L., Whitley, R. J., Stone, E. F. & Mohan, K. ( 1988; ). Difference between herpes simplex virus type 1 and type 2 neonatal encephalitis in neurological outcome. Lancet 1, 1–4.
    [Google Scholar]
  14. Davar, G., Kramer, M. F., Garber, D., Roca, A. L., Andersen, J. K., Bebrin, W., Coen, D. M., Kosz-Vnenchak, M., Knipe, D. M. & other authors ( 1994; ). Comparative efficacy of expression of genes delivered to mouse sensory neurons with herpes virus vectors. J Comp Neurol 339, 3–11.[CrossRef]
    [Google Scholar]
  15. Dienstag, J. L. ( 2008; ). Hepatitis B virus infection. N Engl J Med 359, 1486–1500.[CrossRef]
    [Google Scholar]
  16. Fleming, H. E. & Coen, D. M. ( 1984; ). Herpes simplex virus mutants resistant to arabinosyladenine in the presence of deoxycoformycin. Antimicrob Agents Chemother 26, 382–387.[CrossRef]
    [Google Scholar]
  17. Griffiths, A., Chen, S. H., Horsburgh, B. C. & Coen, D. M. ( 2003; ). Translational compensation of a frameshift mutation affecting herpes simplex virus thymidine kinase is sufficient to permit reactivation from latency. J Virol 77, 4703–4709.[CrossRef]
    [Google Scholar]
  18. Hoofnagle, J. H. & di Bisceglie, A. M. ( 1997; ). The treatment of chronic viral hepatitis. N Engl J Med 336, 347–356.[CrossRef]
    [Google Scholar]
  19. Horsburgh, B. C., Chen, S. H., Hu, A., Mulamba, G. B., Burns, W. H. & Coen, D. M. ( 1998; ). Recurrent acyclovir-resistant herpes simplex in an immunocompromised patient: can strain differences compensate for loss of thymidine kinase in pathogenesis? J Infect Dis 178, 618–625.[CrossRef]
    [Google Scholar]
  20. Kassim, S. H., Rajasagi, N. K., Zhao, X., Chervenak, R. & Jennings, S. R. ( 2006; ). In vivo ablation of CD11c-positive dendritic cells increases susceptibility to herpes simplex virus type 1 infection and diminishes NK and T-cell responses. J Virol 80, 3985–3993.[CrossRef]
    [Google Scholar]
  21. Larkin, J., Jin, L., Farmen, M., Venable, D., Huang, Y., Tan, S. L. & Glass, J. I. ( 2003; ). Synergistic antiviral activity of human interferon combinations in the hepatitis C virus replicon system. J Interferon Cytokine Res 23, 247–257.[CrossRef]
    [Google Scholar]
  22. Le Bon, A. & Tough, D. F. ( 2002; ). Links between innate and adaptive immunity via type I interferon. Curr Opin Immunol 14, 432–436.[CrossRef]
    [Google Scholar]
  23. Mossman, K. L., Saffran, H. A. & Smiley, J. R. ( 2000; ). Herpes simplex virus ICP0 mutants are hypersensitive to interferon. J Virol 74, 2052–2056.[CrossRef]
    [Google Scholar]
  24. Pazin, G. J., Armstrong, J. A., Lam, M. T., Tarr, G. C., Jannetta, P. J. & Ho, M. ( 1979; ). Prevention of reactivated herpes simplex infection by human leukocyte interferon after operation on the trigeminal root. N Engl J Med 301, 225–230.[CrossRef]
    [Google Scholar]
  25. Pelosi, E., Rozenberg, F., Coen, D. M. & Tyler, K. L. ( 1998; ). A herpes simplex virus DNA polymerase mutation that specifically attenuates neurovirulence in mice. Virology 252, 364–372.[CrossRef]
    [Google Scholar]
  26. Peng, T., Zhu, J., Hwangbo, Y., Corey, L. & Bumgarner, R. E. ( 2008; ). Independent and cooperative antiviral actions of beta interferon and gamma interferon against herpes simplex virus replication in primary human fibroblasts. J Virol 82, 1934–1945.[CrossRef]
    [Google Scholar]
  27. Roizman, B., Knipe, D. M. & Whitley, R. J. ( 2007; ). Herpes simplex viruses. In Fields Virology, 5th edn, pp. 2501–2601. Edited by D. M. Knipe & P. Howley. Philadelphia: Lippincott Williams & Wilkins.
  28. Sainz, B., Jr & Halford, W. P. ( 2002; ). Alpha/beta interferon and gamma interferon synergize to inhibit the replication of herpes simplex virus type 1. J Virol 76, 11541–11550.[CrossRef]
    [Google Scholar]
  29. Sainz, B., Jr, Mossel, E. C., Peters, C. J. & Garry, R. F. ( 2004; ). Interferon-beta and interferon-gamma synergistically inhibit the replication of severe acute respiratory syndrome-associated coronavirus (SARS-CoV). Virology 329, 11–17.[CrossRef]
    [Google Scholar]
  30. Sainz, B., Jr, LaMarca, H. L., Garry, R. F. & Morris, C. A. ( 2005; ). Synergistic inhibition of human cytomegalovirus replication by interferon-alpha/beta and interferon-gamma. Virol J 2, 14–26.[CrossRef]
    [Google Scholar]
  31. Schoenborn, J. R. & Wilson, C. B. ( 2007; ). Regulation of interferon-γ during innate and adaptive immune responses. Adv Immunol 96, 41–101.
    [Google Scholar]
  32. Staats, H. F., Oakes, J. E. & Lausch, R. N. ( 1991; ). Anti-glycoprotein D monoclonal antibody protects against herpes simplex virus type 1-induced diseases in mice functionally depleted of selected T-cell subsets or asialo GM1+ cells. J Virol 65, 6008–6014.
    [Google Scholar]
  33. Stanberry, L. R., Jorgensen, D. M. & Nahmias, A. J. ( 1997; ). Herpes simplex viruses 1 and 2. In Viral Infections of Humans: Epidemiology and Control, pp. 419–454. Edited by A. S. Evans & R. A. Kaslow. New York: Springer.
  34. Stranska, R., van Loon, A. M., Polman, M., Beersma, M. F., Bredius, R. G., Lankester, A. C., Meijer, E. & Schuurman, R. ( 2004; ). Genotypic and phenotypic characterization of acyclovir-resistant herpes simplex viruses isolated from haematopoietic stem cell transplant recipients. Antivir Ther 9, 565–575.
    [Google Scholar]
  35. Tenser, R. B. & Edris, W. A. ( 1987; ). Trigeminal ganglion infection by thymidine kinase-negative mutants of herpes simplex virus after in vivo complementation. J Virol 61, 2171–2174.
    [Google Scholar]
  36. Virelizier, J. L. & Arenzana-Seisdedos, F. ( 1985; ). Immunological functions of macrophages and their regulation by interferons. Med Biol 63, 149–159.
    [Google Scholar]
  37. Wang, K., Mahalingam, G., Hoover, S. E., Mont, E. K., Holland, S. M., Cohen, J. I. & Straus, S. E. ( 2007; ). Diverse herpes simplex virus type 1 thymidine kinase mutants in individual human neurons and ganglia. J Virol 81, 6817–6826.[CrossRef]
    [Google Scholar]
  38. Whitley, R. J. ( 2002; ). Herpes simplex virus infection. Semin Pediatr Infect Dis 13, 6–11.[CrossRef]
    [Google Scholar]
  39. Zhang, S. Y., Jouanguy, E., Ugolini, S., Smahi, A., Elain, G., Romero, P., Segal, D., Sancho-Shimizu, V., Lorenzo, L. & other authors ( 2007; ). TLR3 deficiency in patients with herpes simplex encephalitis. Science 317, 1522–1527.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.016964-0
Loading
/content/journal/jgv/10.1099/vir.0.016964-0
Loading

Data & Media loading...

Supplements

vol. , part 3, pp. 591 - 598

IFN-beta plus IFN-gamma treatment

Induction of RNase L by IFN treatments [Single PDF file](48 KB)



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error