The cellular DEAD-box protein DDX3 was recently shown to be essential for hepatitis C virus (HCV) replication. Prior to that, we had reported that HCV core binds to DDX3 in yeast-two hybrid and transient transfection assays. Here, we confirm by co-immunoprecipitation that this interaction occurs in cells replicating the JFH1 virus. Consistent with this result, immunofluorescence staining of infected cells revealed a dramatic redistribution of cytoplasmic DDX3 by core protein to the virus assembly sites around lipid droplets. Given this close association of DDX3 with core and lipid droplets, and its involvement in virus replication, we investigated the importance of this host factor in the virus life cycle. Mutagenesis studies located a single amino acid in the N-terminal domain of JFH1 core that when changed to alanine significantly abrogated this interaction. Surprisingly, this mutation did not alter infectious virus production and RNA replication, indicating that the core–DDX3 interaction is dispensable in the HCV life cycle. Consistent with previous studies, siRNA-led knockdown of DDX3 lowered virus production and RNA replication levels of both WT JFH1 and the mutant virus unable to bind DDX3. Thus, our study shows for the first time that the requirement of DDX3 for HCV replication is unrelated to its interaction with the viral core protein.


Article metrics loading...

Loading full text...

Full text loading...



  1. Ariumi, Y., Kuroki, M., Abe, K., Dansako, H., Ikeda, M., Wakita, T. & Kato, N.(2007). DDX3 DEAD-box RNA helicase is required for hepatitis C virus RNA replication. J Virol 81, 13922–13926.[CrossRef] [Google Scholar]
  2. Barba, G., Harper, F., Harada, T., Kohara, M., Goulinet, S., Matsuura, Y., Eder, G., Schaff, Z., Chapman, M. J. & other authors(1997). Hepatitis C virus core protein shows a cytoplasmic localization and associates to cellular lipid storage droplets. Proc Natl Acad Sci U S A 94, 1200–1205.[CrossRef] [Google Scholar]
  3. Beckham, C., Hilliker, A., Cziko, A. M., Noueiry, A., Ramaswami, M. & Parker, R.(2008). The DEAD-Box RNA helicase Ded1p affects and accumulates in Saccharomyces cerevisiae P-bodies. Mol Biol Cell 19, 984–993. [Google Scholar]
  4. Blight, K. J., Kolykhalov, A. A. & Rice, C. M.(2000). Efficient initiation of HCV RNA replication in cell culture. Science 290, 1972–1974.[CrossRef] [Google Scholar]
  5. Botlagunta, M., Vesuna, F., Mironchik, Y., Raman, A., Lisok, A., Winnard, P., Jr, Mukadam, S., Van Diest, P., Chen, J. H. & other authors(2008). Oncogenic role of DDX3 in breast cancer biogenesis. Oncogene 27, 3912–3922.[CrossRef] [Google Scholar]
  6. Boulant, S., Vanbelle, C., Ebel, C., Penin, F. & Lavergne, J. P.(2005). Hepatitis C virus core protein is a dimeric alpha-helical protein exhibiting membrane protein features. J Virol 79, 11353–11365.[CrossRef] [Google Scholar]
  7. Boulant, S., Montserret, R., Hope, R. G., Ratinier, M., Targett-Adams, P., Lavergne, J. P., Penin, F. & McLauchlan, J.(2006). Structural determinants that target the hepatitis C virus core protein to lipid droplets. J Biol Chem 281, 22236–22247.[CrossRef] [Google Scholar]
  8. Boulant, S., Targett-Adams, P. & McLauchlan, J.(2007). Disrupting the association of hepatitis C virus core protein with lipid droplets correlates with a loss in production of infectious virus. J Gen Virol 88, 2204–2213.[CrossRef] [Google Scholar]
  9. Bukh, J., Miller, R. H. & Purcell, R. H.(1995). Genetic heterogeneity of hepatitis C virus: quasispecies and genotypes. Semin Liver Dis 15, 41–63.[CrossRef] [Google Scholar]
  10. Chang, P. C., Chi, C. W., Chau, G. Y., Li, F. Y., Tsai, Y. H., Wu, J. C. & Wu Lee, Y. H.(2006). DDX3, a DEAD box RNA helicase, is deregulated in hepatitis virus-associated hepatocellular carcinoma and is involved in cell growth control. Oncogene 25, 1991–2003.[CrossRef] [Google Scholar]
  11. Chao, C. H., Chen, C. M., Cheng, P. L., Shih, J. W., Tsou, A. P. & Lee, Y. H.(2006). DDX3, a DEAD box RNA helicase with tumor growth-suppressive property and transcriptional regulation activity of the p21waf1/cip1 promoter, is a candidate tumor suppressor. Cancer Res 66, 6579–6588.[CrossRef] [Google Scholar]
  12. Chen, S. L. & Morgan, T. R.(2006). The natural history of hepatitis C virus (HCV) infection. Int J Med Sci 3, 47–52. [Google Scholar]
  13. Clayton, R. F., Owsianka, A., Aitken, J., Graham, S., Bhella, D. & Patel, A. H.(2002). Analysis of antigenicity and topology of E2 glycoprotein present on recombinant hepatitis C virus-like particles. J Virol 76, 7672–7682.[CrossRef] [Google Scholar]
  14. Cordin, O., Banroques, J., Tanner, N. K. & Linder, P.(2006). The DEAD-box protein family of RNA helicases. Gene 367, 17–37.[CrossRef] [Google Scholar]
  15. Deckert, J., Hartmuth, K., Boehringer, D., Behzadnia, N., Will, C. L., Kastner, B., Stark, H., Urlaub, H. & Luhrmann, R.(2006). Protein composition and electron microscopy structure of affinity-purified human spliceosomal B complexes isolated under physiological conditions. Mol Cell Biol 26, 5528–5543.[CrossRef] [Google Scholar]
  16. de Veer, M. J., Holko, M., Frevel, M., Walker, E., Der, S., Paranjape, J. M., Silverman, R. H. & Williams, B. R.(2001). Functional classification of interferon-stimulated genes identified using microarrays. J Leukoc Biol 69, 912–920. [Google Scholar]
  17. Franca, R., Belfiore, A., Spadari, S. & Maga, G.(2007). Human DEAD-box ATPase DDX3 shows a relaxed nucleoside substrate specificity. Proteins 67, 1128–1137.[CrossRef] [Google Scholar]
  18. Fujimoto, Y., Itabe, H., Sakai, J., Makita, M., Noda, J., Mori, M., Higashi, Y., Kojima, S. & Takano, T.(2004). Identification of major proteins in the lipid droplet-enriched fraction isolated from the human hepatocyte cell line HuH7. Biochim Biophys Acta 1644, 47–59.[CrossRef] [Google Scholar]
  19. Gururajan, R., Perry-O'Keefe, H., Melton, D. A. & Weeks, D. L.(1991). The Xenopus localized messenger RNA An3 may encode an ATP-dependent RNA helicase. Nature 349, 717–719.[CrossRef] [Google Scholar]
  20. Hope, R. G. & McLauchlan, J.(2000). Sequence motifs required for lipid droplet association and protein stability are unique to the hepatitis C virus core protein. J Gen Virol 81, 1913–1925. [Google Scholar]
  21. Huang, J. S., Chao, C. C., Su, T. L., Yeh, S. H., Chen, D. S., Chen, C. T., Chen, P. J. & Jou, Y. S.(2004). Diverse cellular transformation capability of overexpressed genes in human hepatocellular carcinoma. Biochem Biophys Res Commun 315, 950–958.[CrossRef] [Google Scholar]
  22. Ikeda, M., Yi, M., Li, K. & Lemon, S. M.(2002). Selectable subgenomic and genome-length dicistronic RNAs derived from an infectious molecular clone of the HCV-N strain of hepatitis C virus replicate efficiently in cultured Huh7 cells. J Virol 76, 2997–3006.[CrossRef] [Google Scholar]
  23. Jamieson, D. J. & Beggs, J. D.(1991). A suppressor of yeast spp81/ded1 mutations encodes a very similar putative ATP-dependent RNA helicase. Mol Microbiol 5, 805–812.[CrossRef] [Google Scholar]
  24. Kanai, Y., Dohmae, N. & Hirokawa, N.(2004). Kinesin transports RNA: isolation and characterization of an RNA-transporting granule. Neuron 43, 513–525.[CrossRef] [Google Scholar]
  25. Krishnan, V. & Zeichner, S. L.(2004). Alterations in the expression of DEAD-box and other RNA binding proteins during HIV-1 replication. Retrovirology 1, 42[CrossRef] [Google Scholar]
  26. Leroy, P., Alzari, P., Sassoon, D., Wolgemuth, D. & Fellous, M.(1989). The protein encoded by a murine male germ cell-specific transcript is a putative ATP-dependent RNA helicase. Cell 57, 549–559.[CrossRef] [Google Scholar]
  27. Lindenbach, B. D., Evans, M. J., Syder, A. J., Wolk, B., Tellinghuisen, T. L., Liu, C. C., Maruyama, T., Hynes, R. O., Burton, D. R. & other authors(2005). Complete replication of hepatitis C virus in cell culture. Science 309, 623–626.[CrossRef] [Google Scholar]
  28. Lohmann, V., Korner, F., Koch, J., Herian, U., Theilmann, L. & Bartenschlager, R.(1999). Replication of subgenomic hepatitis C virus RNAs in a hepatoma cell line. Science 285, 110–113.[CrossRef] [Google Scholar]
  29. Mamiya, N. & Worman, H. J.(1999). Hepatitis C virus core protein binds to a DEAD box RNA helicase. J Biol Chem 274, 15751–15756.[CrossRef] [Google Scholar]
  30. McLauchlan, J.(2000). Properties of the hepatitis C virus core protein: a structural protein that modulates cellular processes. J Viral Hepat 7, 2–14.[CrossRef] [Google Scholar]
  31. Miyanari, Y., Atsuzawa, K., Usuda, N., Watashi, K., Hishiki, T., Zayas, M., Bartenschlager, R., Wakita, T., Hijikata, M. & Shimotohno, K.(2007). The lipid droplet is an important organelle for hepatitis C virus production. Nat Cell Biol 9, 1089–1097.[CrossRef] [Google Scholar]
  32. Moradpour, D., Wakita, T., Tokushige, K., Carlson, R. I., Krawczynski, K. & Wands, J. R.(1996). Characterization of three novel monoclonal antibodies against hepatitis C virus core protein. J Med Virol 48, 234–241.[CrossRef] [Google Scholar]
  33. Moradpour, D., Penin, F. & Rice, C. M.(2007). Replication of hepatitis C virus. Nat Rev Microbiol 5, 453–463.[CrossRef] [Google Scholar]
  34. Nakabayashi, H., Taketa, K., Miyano, K., Yamane, T. & Sato, J.(1982). Growth of human hepatoma cells lines with differentiated functions in chemically defined medium. Cancer Res 42, 3858–3863. [Google Scholar]
  35. Noueiry, A. O., Chen, J. & Ahlquist, P.(2000). A mutant allele of essential, general translation initiation factor DED1 selectively inhibits translation of a viral mRNA. Proc Natl Acad Sci U S A 97, 12985–12990.[CrossRef] [Google Scholar]
  36. Owsianka, A. M. & Patel, A. H.(1999). Hepatitis C virus core protein interacts with a human DEAD box protein DDX3. Virology 257, 330–340.[CrossRef] [Google Scholar]
  37. Pawlotsky, J. M.(2003). Hepatitis C virus genetic variability: pathogenic and clinical implications. Clin Liver Dis 7, 45–66.[CrossRef] [Google Scholar]
  38. Pritchard, L., Corne, D., Kell, D., Rowland, J. & Winson, M.(2005). A general model of error-prone PCR. J Theor Biol 234, 497–509.[CrossRef] [Google Scholar]
  39. Randall, G., Panis, M., Cooper, J. D., Tellinghuisen, T. L., Sukhodolets, K. E., Pfeffer, S., Landthaler, M., Landgraf, P., Kan, S. & other authors(2007). Cellular cofactors affecting hepatitis C virus infection and replication. Proc Natl Acad Sci U S A 104, 12884–12889.[CrossRef] [Google Scholar]
  40. Ray, R. B. & Ray, R.(2001). Hepatitis C virus core protein: intriguing properties and functional relevance. FEMS Microbiol Lett 202, 149–156.[CrossRef] [Google Scholar]
  41. Rocak, S. & Linder, P.(2004). DEAD-box proteins: the driving forces behind RNA metabolism. Nat Rev Mol Cell Biol 5, 232–241.[CrossRef] [Google Scholar]
  42. Roingeard, P. & Hourioux, C.(2008). Hepatitis C virus core protein, lipid droplets and steatosis. J Viral Hepat 15, 157–164. [Google Scholar]
  43. Rosner, A. & Rinkevich, B.(2007). The DDX3 subfamily of the DEAD box helicases: divergent roles as unveiled by studying different organisms and in vitro assays. Curr Med Chem 14, 2517–2525.[CrossRef] [Google Scholar]
  44. Saban, M. R., Hellmich, H. L., Turner, M., Nguyen, N. B., Vadigepalli, R., Dyer, D. W., Hurst, R. E., Centola, M. & Saban, R.(2006). The inflammatory and normal transcriptome of mouse bladder detrusor and mucosa. BMC Physiol 6, 1[CrossRef] [Google Scholar]
  45. Sato, S., Fukasawa, M., Yamakawa, Y., Natsume, T., Suzuki, T., Shoji, I., Aizaki, H., Miyamura, T. & Nishijima, M.(2006). Proteomic profiling of lipid droplet proteins in hepatoma cell lines expressing hepatitis C virus core protein. J Biochem 139, 921–930.[CrossRef] [Google Scholar]
  46. Schroder, M., Baran, M. & Bowie, A. G.(2008). Viral targeting of DEAD box protein 3 reveals its role in TBK1/IKKϵ-mediated IRF activation. EMBO J 27, 2147–2157.[CrossRef] [Google Scholar]
  47. Sekiguchi, T., Kurihara, Y. & Fukumura, J.(2007). Phosphorylation of threonine 204 of DEAD-box RNA helicase DDX3 by cyclin B/cdc2 in vitro. Biochem Biophys Res Commun 356, 668–673.[CrossRef] [Google Scholar]
  48. Shavinskaya, A., Boulant, S., Penin, F., McLauchlan, J. & Bartenschlager, R.(2007). The lipid droplet binding domain of hepatitis C virus core protein is a major determinant for efficient virus assembly. J Biol Chem 282, 37158–37169.[CrossRef] [Google Scholar]
  49. Shih, J. W., Tsai, T. Y., Chao, C. H. & Wu Lee, Y. H.(2008). Candidate tumor suppressor DDX3 RNA helicase specifically represses cap-dependent translation by acting as an eIF4E inhibitory protein. Oncogene 27, 700–714.[CrossRef] [Google Scholar]
  50. Simmonds, P.(1995). Variability of hepatitis C virus. Hepatology 21, 570–583.[CrossRef] [Google Scholar]
  51. Soulat, D., Burckstummer, T., Westermayer, S., Goncalves, A., Bauch, A., Stefanovic, A., Hantschel, O., Bennett, K. L., Decker, T. & Superti-Furga, G.(2008). The DEAD-box helicase DDX3X is a critical component of the TANK-binding kinase 1-dependent innate immune response. EMBO J 27, 2135–2146.[CrossRef] [Google Scholar]
  52. Sun, M., Song, L., Li, Y., Zhou, T. & Jope, R. S.(2008). Identification of an antiapoptotic protein complex at death receptors. Cell Death Differ 15, 1887–1900.[CrossRef] [Google Scholar]
  53. Targett-Adams, P., Chambers, D., Gledhill, S., Hope, R. G., Coy, J. F., Girod, A. & McLauchlan, J.(2003). Live cell analysis and targeting of the lipid droplet-binding adipocyte differentiation-related protein. J Biol Chem 278, 15998–16007.[CrossRef] [Google Scholar]
  54. Targett-Adams, P., Boulant, S. & McLauchlan, J.(2008). Visualization of double-stranded RNA in cells supporting hepatitis C virus RNA replication. J Virol 82, 2182–2195.[CrossRef] [Google Scholar]
  55. Wakita, T., Pietschmann, T., Kato, T., Date, T., Miyamoto, M., Zhao, Z., Murthy, K., Habermann, A., Krausslich, H. G. & other authors(2005). Production of infectious hepatitis C virus in tissue culture from a cloned viral genome. Nat Med 11, 791–796.[CrossRef] [Google Scholar]
  56. Wang, H., Kim, S. & Ryu, W. S.(2009). DDX3 DEAD-Box RNA helicase inhibits hepatitis B virus reverse transcription by incorporation into nucleocapsids. J Virol 83, 5815–5824.[CrossRef] [Google Scholar]
  57. Watashi, K. & Shimotohno, K.(2003). The roles of hepatitis C virus proteins in modulation of cellular functions: a novel action mechanism of the HCV core protein on gene regulation by nuclear hormone receptors. Cancer Sci 94, 937–943.[CrossRef] [Google Scholar]
  58. Witteveldt, J., Evans, M. J., Bitzegeio, J., Koutsoudakis, G., Owsianka, A. M., Angus, A. G., Keck, Z. Y., Foung, S. K., Pietschmann, T. & other authors(2009). CD81 is dispensable for hepatitis C virus cell-to-cell transmission in hepatoma cells. J Gen Virol 90, 48–58.[CrossRef] [Google Scholar]
  59. Yanagi, M., Purcell, R. H., Emerson, S. U. & Bukh, J.(1997). Transcripts from a single full-length cDNA clone of hepatitis C virus are infectious when directly transfected into the liver of a chimpanzee. Proc Natl Acad Sci U S A 94, 8738–8743.[CrossRef] [Google Scholar]
  60. Yedavalli, V. S., Neuveut, C., Chi, Y. H., Kleiman, L. & Jeang, K. T.(2004). Requirement of DDX3 DEAD box RNA helicase for HIV-1 Rev-RRE export function. Cell 119, 381–392.[CrossRef] [Google Scholar]
  61. Yi, M., Ma, Y., Yates, J. & Lemon, S. M.(2007). Compensatory mutations in E1, p7, NS2, and NS3 enhance yields of cell culture-infectious intergenotypic chimeric hepatitis C virus. J Virol 81, 629–638.[CrossRef] [Google Scholar]
  62. You, L. R., Chen, C. M., Yeh, T. S., Tsai, T. Y., Mai, R. T., Lin, C. H. & Lee, Y. H.(1999). Hepatitis C virus core protein interacts with cellular putative RNA helicase. J Virol 73, 2841–2853. [Google Scholar]
  63. Zhou, Z., Licklider, L. J., Gygi, S. P. & Reed, R.(2002). Comprehensive proteomic analysis of the human spliceosome. Nature 419, 182–185.[CrossRef] [Google Scholar]

Data & Media loading...


vol. , part 1, pp. 122 - 132

Uninfected or JFH1 -infected Huh-7 cells probed with mAb AO322 which recognizes DDX3 both in the nucleus and the cytoplasm

Huh-7 cells transfected with pCE1E2

Characterisation of core mutant viruses [Single PDF file](152 KB)

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error