1887

Abstract

Classical swine fever is a notifiable disease of pigs. The causative agent, classical swine fever virus (CSFV), is highly contagious and causes mild to severe haemorrhagic disease depending on the virulence of the strain. The RNA genome of CSFV is translated as a single polyprotein that is processed to yield 12 proteins. Like other pestiviruses, the first protein to be translated is the N-terminal autoprotease termed N. A novel pestiviral protein with no known cellular homologues, N antagonizes type I interferon (IFN) induction by binding and targeting the transcription factor IFN regulatory factor 3 (IRF-3) for ubiquitin-dependent proteasomal degradation. In this study, CSFV-infected PK-15 cells and stable cell lines were used to show that N is itself an unstable protein that is targeted for proteasomal degradation in a ubiquitin-dependent manner. In addition, N is not degraded as a direct consequence of its ability to interact with IRF-3 or to target IRF-3 for proteasomal degradation.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.015545-0
2010-03-01
2019-11-18
Loading full text...

Full text loading...

/deliver/fulltext/jgv/91/3/721.html?itemId=/content/journal/jgv/10.1099/vir.0.015545-0&mimeType=html&fmt=ahah

References

  1. Baigent, S. J., Zhang, G., Fray, M. D., Flick-Smith, H., Goodbourn, S. & McCauley, J. W. ( 2002; ). Inhibition of beta interferon transcription by noncytopathogenic bovine viral diarrhea virus is through an interferon regulatory factor 3-dependent mechanism. J Virol 76, 8979–8988.[CrossRef]
    [Google Scholar]
  2. Baigent, S. J., Goodbourn, S. & McCauley, J. W. ( 2004; ). Differential activation of interferon regulatory factors-3 and -7 by non-cytopathogenic and cytopathogenic bovine viral diarrhoea virus. Vet Immunol Immunopathol 100, 135–144.[CrossRef]
    [Google Scholar]
  3. Barro, M. & Patton, J. T. ( 2005; ). Rotavirus nonstructural protein 1 subverts innate immune response by inducing degradation of IFN regulatory factor 3. Proc Natl Acad Sci U S A 102, 4114–4119.[CrossRef]
    [Google Scholar]
  4. Barro, M. & Patton, J. T. ( 2007; ). Rotavirus NSP1 inhibits expression of type I interferon by antagonizing the function of interferon regulatory factors IRF3, IRF5, and IRF7. J Virol 81, 4473–4481.[CrossRef]
    [Google Scholar]
  5. Bauhofer, O., Summerfield, A., Sakoda, Y., Tratschin, J. D., Hofmann, M. A. & Ruggli, N. ( 2007; ). Classical swine fever virus Npro interacts with interferon regulatory factor 3 and induces its proteasomal degradation. J Virol 81, 3087–3096.[CrossRef]
    [Google Scholar]
  6. Bensaude, E., Turner, J. L. E., Wakeley, P. R., Sweetman, D. A., Pardieu, C., Drew, T. W., Wileman, T. & Powel, P. P. ( 2004; ). Classical swine fever virus induces proinflammatory cytokines and tissue factor expression and inhibits apoptosis and interferon synthesis during the establishment of long-term infection of porcine vascular endothelial cells. J Gen Virol 85, 1029–1037.[CrossRef]
    [Google Scholar]
  7. Bibeau-Poirier, A., Gravel, S. P., Clement, J. F., Rolland, S., Rodier, G., Coulombe, P., Hiscott, J., Grandvaux, N., Meloche, S. & Servant, M. J. ( 2006; ). Involvement of the IκB kinase (IKK)-related kinases tank-binding kinase 1/IKKi and cullin-based ubiquitin ligases in IFN regulatory factor-3 degradation. J Immunol 177, 5059–5067.[CrossRef]
    [Google Scholar]
  8. Charleston, B., Fray, M. D., Baigent, S., Carr, B. V. & Morrison, W. I. ( 2001; ). Establishment of persistent infection with non-cytopathic bovine viral diarrhoea virus in cattle is associated with a failure to induce type I interferon. J Gen Virol 82, 1893–1897.
    [Google Scholar]
  9. Chen, Z., Rijnbrand, R., Jangra, R. K., Devaraj, S. G., Qu, L., Ma, Y., Lemon, S. M. & Li, K. ( 2007; ). Ubiquitination and proteasomal degradation of interferon regulatory factor-3 induced by Npro from a cytopathic bovine viral diarrhea virus. Virology 366, 277–292.[CrossRef]
    [Google Scholar]
  10. Coux, O., Tanaka, K. & Goldberg, A. L. ( 1996; ). Structure and functions of the 20S and 26S proteasomes. Annu Rev Biochem 65, 801–847.[CrossRef]
    [Google Scholar]
  11. Doceul, V., Charleston, B., Crooke, H., Reid, E., Powell, P. P. & Seago, J. ( 2008; ). The Npro product of classical swine fever virus interacts with IκBα, the NF-κB inhibitor. J Gen Virol 89, 1881–1889.[CrossRef]
    [Google Scholar]
  12. Donello, J. E., Loeb, J. E. & Hope, T. J. ( 1998; ). Woodchuck hepatitis virus contains a tripartite posttranscriptional regulatory element. J Virol 72, 5085–5092.
    [Google Scholar]
  13. Gil, L. H., Ansari, I. H., Vassilev, V., Liang, D., Lai, V. C., Zhong, W., Hong, Z., Dubovi, E. J. & Donis, R. O. ( 2006; ). The amino-terminal domain of bovine viral diarrhea virus Npro protein is necessary for alpha/beta interferon antagonism. J Virol 80, 900–911.[CrossRef]
    [Google Scholar]
  14. Graff, J. W., Mitzel, D. N., Weisend, C. M., Flenniken, M. L. & Hardy, M. E. ( 2002; ). Interferon regulatory factor 3 is a cellular partner of rotavirus NSP1. J Virol 76, 9545–9550.[CrossRef]
    [Google Scholar]
  15. Graff, J. W., Ewen, J., Ettayebi, K. & Hardy, M. E. ( 2007; ). Zinc-binding domain of rotavirus NSP1 is required for proteasome-dependent degradation of IRF3 and autoregulatory NSP1 stability. J Gen Virol 88, 613–620.[CrossRef]
    [Google Scholar]
  16. Hilton, L., Moganeradj, K., Zhang, G., Chen, Y. H., Randall, R. E., McCauley, J. W. & Goodbourn, S. ( 2006; ). The NPro product of bovine viral diarrhea virus inhibits DNA binding by interferon regulatory factor 3 and targets it for proteasomal degradation. J Virol 80, 11723–11732.[CrossRef]
    [Google Scholar]
  17. Lindenbach, B. D., Thiel, H. J. & Rice, C. M. ( 2007; ). Flaviviridae: the viruses and their replication. In Fields Virology, 5th edn, pp. 1101–1152. Edited by D. M. Knipe & P. M. Howley. Philadelphia, PA: Lippincott Williams & Wilkins.
  18. Mähönen, A. J., Airenne, K. J., Purola, S., Peltomaa, E., Kaikkonen, M. U., Riekkinen, M. S., Heikura, T., Kinnunen, K., Roschier, M. M. & other authors ( 2007; ). Post-transcriptional regulatory element boosts baculovirus-mediated gene expression in vertebrate cells. J Biotechnol 131, 1–8.[CrossRef]
    [Google Scholar]
  19. Meyers, G., Ege, A., Fetzer, C., von Freyburg, M., Elbers, K., Carr, V., Prentice, H., Charleston, B. & Schurmann, E.-M. ( 2007; ). Bovine viral diarrhea virus: prevention of persistent fetal infection by a combination of two mutations affecting Erns RNase and Npro protease. J Virol 81, 3327–3338.[CrossRef]
    [Google Scholar]
  20. Myung, J., Kim, K. B. & Crews, M. C. ( 2001; ). The ubiquitin–proteasome pathway and proteasome inhibitors. Med Res Rev 21, 245–273.[CrossRef]
    [Google Scholar]
  21. Popa, I., Harris, M. E., Donello, J. E. & Hope, T. J. ( 2002; ). CRM1-dependent function of a cis-acting RNA export element. Mol Cell Biol 22, 2057–2067.[CrossRef]
    [Google Scholar]
  22. Ruggli, N., Tratschin, J. D., Schweizer, M., McCullough, K. C., Hofmann, M. A. & Summerfield, A. ( 2003; ). Classical swine fever virus interferes with cellular antiviral defense: evidence for a novel function of Npro. J Virol 77, 7645–7654.[CrossRef]
    [Google Scholar]
  23. Ruggli, N., Bird, B. H., Liu, L., Bauhofer, O., Tratschin, J. D. & Hofmann, M. A. ( 2005; ). Npro of classical swine fever virus is an antagonist of double-stranded RNA-mediated apoptosis and IFN-α/β induction. Virology 340, 265–276.[CrossRef]
    [Google Scholar]
  24. Ruggli, N., Summerfield, A., Fiebach, A. R., Guzylack-Piriou, L., Bauhofer, O., Lamm, C. G., Waltersperger, S., Matsuno, K., Liu, L. & other authors ( 2009; ). Classical swine fever virus can remain virulent after specific elimination of the interferon regulatory factor 3 degrading function of Npro. J Virol 83, 817–829.[CrossRef]
    [Google Scholar]
  25. Sato, M., Suemori, H., Hata, N., Asagiri, M., Ogasawara, K., Nakao, K., Nakaya, T., Katsuki, M., Noguchi, S. & other authors ( 2000; ). Distinct and essential roles of transcription factors IRF-3 and IRF-7 in response to viruses for IFN-α/β gene induction. Immunity 13, 539–548.[CrossRef]
    [Google Scholar]
  26. Schweizer, M. & Peterhans, E. ( 2001; ). Noncytopathic bovine viral diarrhea virus inhibits double-stranded RNA-induced apoptosis and interferon synthesis. J Virol 75, 4692–4698.[CrossRef]
    [Google Scholar]
  27. Seago, J., Hilton, L., Reid, E., Doceul, V., Jeyatheesan, J., Moganeradj, K., McCauley, J., Charleston, B. & Goodbourn, S. ( 2007; ). The Npro product of classical swine fever virus and bovine viral diarrhea virus uses a conserved mechanism to target interferon regulatory factor-3. J Gen Virol 88, 3002–3006.[CrossRef]
    [Google Scholar]
  28. Sen, A., Feng, N., Ettayebi, K., Hardy, M. E. & Greenberg, H. B. ( 2009; ). IRF3 inhibition by rotavirus NSP1 is host cell and virus strain dependent but independent of NSP1 proteasomal degradation. J Virol 83, 10322–10335.[CrossRef]
    [Google Scholar]
  29. Shirakura, M., Murakami, K., Ichimura, T., Suzuki, R., Shimoji, T., Fukuda, K., Abe, K., Sato, S., Fukasawa, M. & other authors ( 2007; ). E6AP ubiquitin ligase mediates ubiquitylation and degradation of hepatitis C virus core protein. J Virol 81, 1174–1185.[CrossRef]
    [Google Scholar]
  30. Suzuki, R., Moriishi, K., Fukuda, K., Shirakura, M., Ishii, K., Shoji, I., Wakita, T., Miyamura, T., Matsuura, Y. & Suzuki, T. ( 2009; ). Proteasomal turnover of hepatitis C virus core protein is regulated by two distinct mechanisms: a ubiquitin-dependent mechanism and a ubiquitin-independent but PA28γ-dependent mechanism. J Virol 83, 2389–2392.[CrossRef]
    [Google Scholar]
  31. Szymanski, M. R., Fiebach, A. R., Tratschin, J.-D., Gut, M., Ramanujam, V. M. S., Gottipati, K., Patel, P., Ye, M., Ruggli, N. & Choi, K. H. ( 2009; ). Zinc binding in pestivirus Npro is required for interferon regulatory factor 3 interaction and degradation. J Mol Biol 391, 438–449.[CrossRef]
    [Google Scholar]
  32. Thiel, H.-J., Plagemann, P. G. W. & Moennig, V. ( 1996; ). Pestiviruses. In Fields Virology, 3rd edn, pp. 1059–1073. Edited by B. N. Fields, D. M. Knipe & P. M. Howley. Philadelphia, PA: Lippincott–Raven.
  33. Zufferey, R., Donello, J. E., Trono, D. & Hope, T. J. ( 1999; ). Woodchuck hepatitis virus posttranscriptional regulatory element enhances expression of transgenes delivered by retroviral vectors. J Virol 73, 2886–2892.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.015545-0
Loading
/content/journal/jgv/10.1099/vir.0.015545-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error