1887

Abstract

The CII protein of the temperate bacteriophage is the decision-making factor that determines the viral lytic/lysogenic choice. It is a homotetrameric transcription activator that recognizes and binds specific direct repeat sequences TTGCNTTGC in the genome. The quaternary structure of CII is held by a four-helix bundle. It is known that the tetrameric organization of CII is necessary for its activity, but the molecular mechanism behind this requirement is not known. By specific site-directed mutagenesis of hydrophobic residues in the 4 helix of CII that constitutes the four-helix bundle, we found that residues leu70, val74 and leu78 were crucial for maintaining the tetrameric structure of the protein. When any of these residues was substituted by a polar one, CII lost its activity and failed to promote lysogeny. This loss of activity was accompanied by the inability of CII to form tetramers, to bind DNA or to activate transcription.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.015040-0
2010-01-01
2019-11-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/91/1/306.html?itemId=/content/journal/jgv/10.1099/vir.0.015040-0&mimeType=html&fmt=ahah

References

  1. Banuett, F., Hoyt, M. A., Mcfarlane, L., Echols, H. & Herskowitz, I. ( 1986; ). HflB, a new Escherichia coli locus regulating lysogeny and the level of bacteriophage lambda CII protein. J Mol Biol 187, 213–224.[CrossRef]
    [Google Scholar]
  2. Bohm, G., Muhr, R. & Jaenicke, R. ( 1992; ). Quantitative analysis of protein far UV circular dichroism spectra by neural networks. Protein Eng 5, 191–195.[CrossRef]
    [Google Scholar]
  3. Brennan, R. G. & Matthews, B. W. ( 1989; ). The helix-turn-helix DNA binding motif. J Biol Chem 264, 1903–1906.
    [Google Scholar]
  4. Brenowitz, M., Mandal, N. C., Pickar, A., Jamison, E. & Adhya, S. ( 1991; ). DNA-binding properties of a lac repressor mutant incapable of forming tetramers. J Biol Chem 266, 1281–1288.
    [Google Scholar]
  5. Court, D. L., Oppenheim, A. B. & Adhya, S. L. ( 2007; ). A new look at bacteriophage λ genetic networks. J Bacteriol 189, 298–304.[CrossRef]
    [Google Scholar]
  6. Datta, A. B. ( 2003; ). The lysis–lysogeny switch of bacteriophage lambda: a structural and biophysical analysis. PhD thesis, Jadavpur University, Kolkata, India.
  7. Datta, A. B., Chakrabarti, P., Subramanya, H. S. & Parrack, P. ( 2001; ). Purification and crystallization of CII: an unstable transcription activator from phage λ. Biochem Biophys Res Commun 288, 997–1000.[CrossRef]
    [Google Scholar]
  8. Datta, A. B., Roy, S. & Parrack, P. ( 2003; ). Disorder–order transition of λ CII promoted by low concentrations of guanidine hydrochloride suggests a stable core and a flexible C-terminus. Eur J Biochem 270, 4439–4446.[CrossRef]
    [Google Scholar]
  9. Datta, A. B., Panjikar, S., Weiss, M. S., Chakrabarti, P. & Parrack, P. ( 2005a; ). Structure of lambda CII: implication for recognition of direct-repeat DNA by an unusual tetrameric organization. Proc Natl Acad Sci U S A 102, 11242–11247.[CrossRef]
    [Google Scholar]
  10. Datta, A. B., Roy, S. & Parrack, P. ( 2005b; ). Role of C-terminal residues in oligomerization and stability of lambda CII: implications for lysis–lysogeny decision of the phage. J Mol Biol 345, 315–324.[CrossRef]
    [Google Scholar]
  11. Echols, H. ( 1986; ). Bacteriophage λ development: temporal switches and the choice of lysis or lysogeny. Trends Genet 2, 26–30.[CrossRef]
    [Google Scholar]
  12. Friedman, D. I. ( 1992; ). Interaction between bacteriophage lambda and its Escherichia coli host. Curr Opin Genet Dev 2, 727–738.[CrossRef]
    [Google Scholar]
  13. Halder, S., Datta, A. B. & Parrack, P. ( 2007; ). Probing the antiprotease activity of λCIII, an inhibitor of the Escherichia coli metalloprotease HflB (FtsH). J Bacteriol 189, 8130–8138.[CrossRef]
    [Google Scholar]
  14. Hawley, D. K. & McClure, W. R. ( 1983; ). Compilation and analysis of Escherichia coli promoter DNA sequences. Nucleic Acids Res 11, 2237–2255.[CrossRef]
    [Google Scholar]
  15. Herman, C., Thévenet, D., Bouloc, P., Walker, G. C. & D'Ari, R. ( 1998; ). Degradation of carboxy-terminal-tagged cytoplasmic proteins by the Escherichia coli protease HflB (FtsH). Genes Dev 12, 1348–1355.[CrossRef]
    [Google Scholar]
  16. Higuchi, R., Hrummel, B. & Saiki, R. K. ( 1988; ). A general method of in vitro preparation and specific mutagenesis of DNA fragments: study of protein and DNA interactions. Nucleic Acids Res 16, 7351–7367.[CrossRef]
    [Google Scholar]
  17. Ho, Y. S. & Rosenberg, M. ( 1985; ). Characterization of a third, cII-dependent, coordinately activated promoter on phage λ involved in lysogenic development. J Biol Chem 260, 11838–11844.
    [Google Scholar]
  18. Ho, Y., Lewis, M. & Rosenberg, M. ( 1982; ). Purification and properties of a transcriptional activator: the CII protein of phage lambda. J Biol Chem 257, 9128–9134.
    [Google Scholar]
  19. Ho, Y. S., Wulff, D. L. & Rosenberg, M. ( 1983; ). Bacteriophage lambda protein CII binds promoter on the opposite face of the DNA helix from RNA polymerase. Nature 304, 703–708.[CrossRef]
    [Google Scholar]
  20. Ho, Y. S., Mahoney, M. E., Wulff, D. L. & Rosenberg, M. ( 1988; ). Identification of the DNA binding domain of the phage lambda CII transcriptional activator and the direct correlation of CII protein stability with its oligomeric forms. Genes Dev 2, 184–195.[CrossRef]
    [Google Scholar]
  21. Ho, Y. S., Pfarr, D., Strickler, J. & Rosenberg, M. ( 1992; ). Characterization of the transcription activator protein C1 of bacteriophage P22. J Biol Chem 267, 14388–14397.
    [Google Scholar]
  22. Hoyt, M. A., Knight, D. M., Das, A., Miller, H. I. & Echols, H. ( 1982; ). Control of phage lambda development by stability and synthesis of CII protein: role of the viral CIII and host hflA, himA and himD genes. Cell 31, 565–573.[CrossRef]
    [Google Scholar]
  23. Jain, S., Kaushal, D., Dasgupta, S. K. & Tyagi, A. K. ( 1997; ). Construction of shuttle vectors for genetic manipulation and molecular analysis of mycobacteria. Gene 190, 37–44.[CrossRef]
    [Google Scholar]
  24. Jain, D., Kim, Y., Maxwell, K. L., Beasley, S., Zhang, R., Gussin, G. N., Edwards, A. M. & Darst, S. A. ( 2005; ). Crystal structure of bacteriophage λcII and its DNA complex. Mol Cell 19, 259–269.[CrossRef]
    [Google Scholar]
  25. Kaiser, A. D. ( 1957; ). Mutations in a temperate bacteriophage affecting its ability to lysogenize Escherichia coli. Virology 3, 42–61.[CrossRef]
    [Google Scholar]
  26. Kedzierska, B., Lee, D. J., Wegrzyn, G., Busby, S. J. & Thomas, M. S. ( 2004; ). Role of the RNA polymerase alpha subunits in CII-dependent activation of the bacteriophage lambda p E promoter: identification of important residues and positioning of the alpha C-terminal domains. Nucleic Acids Res 32, 834–841.[CrossRef]
    [Google Scholar]
  27. Kobiler, O., Koby, S., Teff, D., Court, D. & Oppenheim, A. B. ( 2002; ). The phage lambda CII transcriptional activator carries a C-terminal domain signaling for rapid proteolysis. Proc Natl Acad Sci U S A 99, 14964–14969.[CrossRef]
    [Google Scholar]
  28. Kobiler, O., Rokney, A. & Oppenheim, A. B. ( 2007; ). Phage lambda CIII: a protease inhibitor regulating the lysis–lysogeny decision. PLoS One 2, e363 [CrossRef]
    [Google Scholar]
  29. LeTilly, V. & Royer, C. A. ( 1993; ). Fluorescence anisotropy assays implicate protein–protein interactions in regulating trp repressor DNA binding. Biochemistry 32, 7753–7758.[CrossRef]
    [Google Scholar]
  30. Lewis, M., Chang, G., Horton, N. C., Kercher, M. A., Pace, H. C., Schumacher, M. A., Brennan, R. G. & Lu, P. ( 1996; ). Crystal structure of the lactose operon repressor and its complexes with DNA and inducer. Science 271, 1247–1254.[CrossRef]
    [Google Scholar]
  31. Marr, M. T., Roberts, J. W., Brown, S. E., Klee, M. & Gussin, G. N. ( 2004; ). Interactions among CII protein, RNA polymerase and the lambda p RE promoter: contacts between RNA polymerase and the −35 region of p RE are identical in the presence and absence of CII protein. Nucleic Acids Res 32, 1083–1090.[CrossRef]
    [Google Scholar]
  32. Miller, J. H. ( 1972; ). Experiments in Molecular Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  33. Pabo, C. O. & Sauer, R. T. ( 1984; ). Protein–DNA recognition. Annu Rev Biochem 53, 293–321.[CrossRef]
    [Google Scholar]
  34. Rattray, A., Altuvia, S., Mahajna, G., Oppenheim, A. B. & Gottesman, M. ( 1984; ). Control of phage lambda cII activity by phage and host functions. J Bacteriol 159, 238–242.
    [Google Scholar]
  35. Shotland, Y., Koby, S., Teff, D., Mansur, N., Oren, D. A., Tatematsu, K., Tomoyasu, T., Kessel, M., Bukau, B. & other authors ( 1997; ). Proteolysis of the phage CII regulatory protein by FtsH (HflB) of Escherichia coli. Mol Microbiol 24, 1303–1310.[CrossRef]
    [Google Scholar]
  36. Shotland, Y., Shifrin, A., Ziv, T., Teff, D., Koby, S., Kobiler, O. & Oppenheim, A. B. ( 2000; ). Proteolysis of bacteriophage λ CII by Escherichia coli FtsH (HflB). J Bacteriol 182, 3111–3119.[CrossRef]
    [Google Scholar]
  37. Simatake, H. & Rosenberg, M. ( 1981; ). Purified lambda regulatory protein cII positively activates promoters for lysogenic development. Nature 292, 128–132.[CrossRef]
    [Google Scholar]
  38. Wegrzyn, G. & Wegrzyn, A. ( 2005; ). Genetic switches during bacteriophage λ development. Prog Nucleic Acid Res Mol Biol 79, 1–48.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.015040-0
Loading
/content/journal/jgv/10.1099/vir.0.015040-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error