1887

Abstract

The innate immune response is critical for host defence against respiratory coronaviruses (CoVs). This study demonstrated that an ongoing respiratory virus infection compromises innate immune responses and affects the pathogenesis of a respiratory CoV co-infection. An innate immunosuppressive respiratory virus infection was established by infecting weaned pigs with porcine reproductive and respiratory syndrome virus (PRRSV); 10 days later, the pigs were exposed to porcine respiratory coronavirus (PRCV). The PRRSV/PRCV dual-infected pigs had reduced weight gains, a higher incidence of fever and more severe pneumonia compared with either single infection. Significant suppression of innate immune responses [reduced alpha interferon (IFN-) levels in the lungs and reduced blood natural killer cell cytotoxicity] by the ongoing PRRSV infection was observed in dual-infected pigs, which coincided with exacerbated pneumonia during early PRCV infection. The subsequent PRCV infection led to enhanced PRRSV replication in the lungs and a trend towards increased serum T-helper type 1 (Th1) (IFN-) but decreased Th2 [interleukin (IL)-4] responses, further exacerbating PRRSV pneumonia. Following PRCV infection, more severe PRRSV-related pulmonary alveolar macrophage (PAM) apoptosis occurred, as determined by an terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling assay, suggesting increased PRRSV replication in PAMs. Collectively, these observations suggest interactive effects between PRCV and PRRSV via early innate (IFN-) and later adaptive Th1 (IFN-) and Th2 (IL-4) immune responses. These findings imply that an existing immunomodulating respiratory viral co-infection may be a contributing factor to more severe pneumonia in respiratory CoV disease. This study provides new insights into host–pathogen interactions related to co-infection by CoVs and other respiratory viruses.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.014001-0
2009-11-01
2019-11-20
Loading full text...

Full text loading...

/deliver/fulltext/jgv/90/11/2713.html?itemId=/content/journal/jgv/10.1099/vir.0.014001-0&mimeType=html&fmt=ahah

References

  1. AVMA Panel on Euthanasia ( 2001; ). 2000 Report of the AVMA Panel on Euthanasia. J Am Vet Med Assoc 218, 669–696.[CrossRef]
    [Google Scholar]
  2. Azevedo, M. S., Yuan, L., Pouly, S., Gonzales, A. M., Jeong, K. I., Nguyen, T. V. & Saif, L. J. ( 2006; ). Cytokine responses in gnotobiotic pigs after infection with virulent or attenuated human rotavirus. J Virol 80, 372–382.[CrossRef]
    [Google Scholar]
  3. Cameron, M. J., Bermejo-Martin, J. F., Danesh, A., Muller, M. P. & Kelvin, D. J. ( 2008; ). Human immunopathogenesis of severe acute respiratory syndrome (SARS). Virus Res 133, 13–19.[CrossRef]
    [Google Scholar]
  4. Canducci, F., Debiaggi, M., Sampaolo, M., Marinozzi, M. C., Berre, S., Terulla, C., Gargantini, G., Cambieri, P., Romero, E. & Clementi, M. ( 2008; ). Two-year prospective study of single infections and co-infections by respiratory syncytial virus and viruses identified recently in infants with acute respiratory disease. J Med Virol 80, 716–723.[CrossRef]
    [Google Scholar]
  5. Chan, P. K., Tam, J. S., Lam, C.-W., Chan, E., Wu, A., Li, C.-K., Buckley, T. A., Ng, K.-C., Joynt, G. M. & other authors ( 2003; ). Human metapneumovirus detection in patients with severe acute respiratory syndrome. Emerg Infect Dis 9, 1058–1063.[CrossRef]
    [Google Scholar]
  6. Chang, H.-W., Jeng, C.-R., Liu, J.-J., Lin, T.-L., Chang, C.-C., Chia, M.-Y., Tsai, Y.-C. & Pang, V. F. ( 2005; ). Reduction of porcine reproductive and respiratory syndrome virus (PRRSV) infection in swine alveolar macrophages by porcine circovirus 2 (PCV2)-induced interferon-alpha. Vet Microbiol 108, 167–177.[CrossRef]
    [Google Scholar]
  7. Charley, B., Riffault, S. & Van Reeth, K. ( 2006; ). Porcine innate and adaptative immune responses to influenza and coronavirus infections. Ann N Y Acad Sci 1081, 130–136.[CrossRef]
    [Google Scholar]
  8. Chen, H. D., Fraire, A. E., Joris, I., Welsh, R. M. & Selin, L. K. ( 2003; ). Specific history of heterologous virus infections determines anti-viral immunity and immunopathology in the lung. Am J Pathol 163, 1341–1355.[CrossRef]
    [Google Scholar]
  9. Costers, S., Lefebvre, D. J., Delputte, P. L. & Nauwynck, H. J. ( 2008; ). Porcine reproductive and respiratory syndrome virus modulates apoptosis during replication in alveolar macrophages. Arch Virol 153, 1453–1465.[CrossRef]
    [Google Scholar]
  10. Cox, E., Hooyberghs, J. & Pensaert, M. B. ( 1990; ). Sites of replication of a porcine respiratory coronavirus related to transmissible gastroenteritis virus. Res Vet Sci 48, 165–169.
    [Google Scholar]
  11. Delputte, P. L., Costers, S. & Nauwynck, H. J. ( 2005; ). Analysis of porcine reproductive and respiratory syndrome virus attachment and internalization: distinctive roles for heparan sulphate and sialoadhesin. J Gen Virol 86, 1441–1445.[CrossRef]
    [Google Scholar]
  12. Delputte, P. L., Van Breedam, W., Barbe, F., Van Reeth, K. & Nauwynck, H. J. ( 2007; ). IFN-α treatment enhances porcine arterivirus infection of monocytes via upregulation of the porcine arterivirus receptor sialoadhesin. J Interferon Cytokine Res 27, 757–766.[CrossRef]
    [Google Scholar]
  13. Didierlaurent, A., Goulding, J. & Hussell, T. ( 2007; ). The impact of successive infections on the lung microenvironment. Immunology 122, 457–465.[CrossRef]
    [Google Scholar]
  14. Du, L., Zhao, G., Lin, Y., Sui, H., Chan, C., Ma, S., He, Y., Jiang, S., Wu, C. & other authors ( 2008; ). Intranasal vaccination of recombinant adeno-associated virus encoding receptor-binding domain of severe acute respiratory syndrome coronavirus (SARS-CoV) spike protein induces strong mucosal immune responses and provides long-term protection against SARS-CoV infection. J Immunol 180, 948–956.[CrossRef]
    [Google Scholar]
  15. Frieman, M., Heise, M. & Baric, R. ( 2008; ). SARS coronavirus and innate immunity. Virus Res 133, 101–112.[CrossRef]
    [Google Scholar]
  16. Halbur, P. G., Paul, P. S., Vaughn, E. M. & Andrews, J. J. ( 1993; ). Experimental reproduction of pneumonia in gnotobiotic pigs with porcine respiratory coronavirus isolate AR310. J Vet Diagn Invest 5, 184–188.[CrossRef]
    [Google Scholar]
  17. He, C., Yang, Q., Lei, M., Pang, W., Yang, J., Zhu, H. & Duan, Q. ( 2006; ). Diffuse alveolar lesion in BALB/c mice induced with human reovirus BYD1 strain and its potential relation with SARS. Exp Anim 55, 439–447.[CrossRef]
    [Google Scholar]
  18. Huang, K.-J., Su, I.-J., Theron, M., Wu, Y.-C., Lai, S.-K., Liu, C.-C. & Lei, H.-Y. ( 2005; ). An interferon-γ-related cytokine storm in SARS patients. J Med Virol 75, 185–194.[CrossRef]
    [Google Scholar]
  19. Hwang, D. M., Chamberlain, D. W., Poutanen, S. M., Low, D. E., Asa, S. L. & Butany, J. ( 2005; ). Pulmonary pathology of severe acute respiratory syndrome in Toronto. Mod Pathol 18, 1–10.[CrossRef]
    [Google Scholar]
  20. Jabrane, A., Girard, C. & Elazhary, Y. ( 1994; ). Pathogenicity of porcine respiratory coronavirus isolated in Quebec. Can Vet J 35, 86–92.
    [Google Scholar]
  21. Jung, K., Alekseev, K. P., Zhang, X., Cheon, D. S., Vlasova, A. N. & Saif, L. J. ( 2007; ). Altered pathogenesis of porcine respiratory coronavirus in pigs due to immunosuppressive effects of dexamethasone: implications for corticosteroid use in treatment of severe acute respiratory syndrome coronavirus. J Virol 81, 13681–13693.[CrossRef]
    [Google Scholar]
  22. Jung, K., Kang, B-K., Lee, C.-S. & Song, D.-S. ( 2008; ). Impact of porcine group A rotavirus co-infection on porcine epidemic diarrhea virus pathogenicity in piglets. Res Vet Sci 84, 502–506.[CrossRef]
    [Google Scholar]
  23. Kamogawa, O., Tomita, Y., Kaneko, M., Yamada, S., Kubo, M. & Shimizu, M. ( 1996; ). Isolation of porcine respiratory coronavirus from pigs affected with porcine reproductive and respiratory syndrome. J Vet Med Sci 58, 385–388.[CrossRef]
    [Google Scholar]
  24. Kim, T. S., Benfield, D. A. & Rowland, R. R. ( 2002; ). Porcine reproductive and respiratory syndrome virus-induced cell death exhibits features consistent with a nontypical form of apoptosis. Virus Res 85, 133–140.[CrossRef]
    [Google Scholar]
  25. Korzeniewski, C. & Callewaert, D. M. ( 1983; ). An enzyme-release assay for natural cytotoxicity. J Immunol Methods 64, 313–320.[CrossRef]
    [Google Scholar]
  26. Kuiken, T., Fouchier, R. A., Schutten, M., Rimmelzwaan, G. F., van Amerongen, G., van Riel, D., Laman, J. D., de Jong, T., van Doornum, G. & other authors ( 2003; ). Newly discovered coronavirus as the primary cause of severe acute respiratory syndrome. Lancet 362, 263–270.[CrossRef]
    [Google Scholar]
  27. Lanza, I., Brown, I. H. & Paton, D. J. ( 1992; ). Pathogenicity of concurrent infection of pigs with porcine respiratory coronavirus and swine influenza virus. Res Vet Sci 53, 309–314.[CrossRef]
    [Google Scholar]
  28. Lau, S. K., Woo, P. C., Li, K. S., Huang, Y., Tsoi, H.-W., Wong, B. H., Wong, S. S., Leung, S.-Y., Chan, K.-H. & Yuen, K.-Y. ( 2005; ). Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. Proc Natl Acad Sci U S A 102, 14040–14045.[CrossRef]
    [Google Scholar]
  29. Lemke, C. D., Haynes, J. S., Spaete, R., Adolphson, D., Vorwald, A., Lager, K. & Butler, J. E. ( 2004; ). Lymphoid hyperplasia resulting in immune dysregulation is caused by porcine reproductive and respiratory syndrome virus infection in neonatal pigs. J Immunol 172, 1916–1925.[CrossRef]
    [Google Scholar]
  30. Louie, J. K., Hacker, J. K., Mark, J., Gavali, S. S., Yagi, S., Espinosa, A., Schnurr, D. P., Cossen, C. K., Isaacson, E. R. & other authors ( 2004; ). SARS and common viral infections. Emerg Infect Dis 10, 1143–1146.[CrossRef]
    [Google Scholar]
  31. Mateu, E. & Diaz, I. ( 2008; ). The challenge of PRRS immunology. Vet J 177, 345–351.[CrossRef]
    [Google Scholar]
  32. Molina, R. M., Nelson, E. A., Christopher-Hennings, J., Hesse, R., Rowland, R. R. & Zimmerman, J. J. ( 2008; ). Evaluation of the risk of PRRSV transmission via ingestion of muscle from persistently infected pigs. Transbound Emerg Dis 56, 1–8.
    [Google Scholar]
  33. Rossow, K. D. ( 1998; ). Porcine reproductive and respiratory syndrome. Vet Pathol 35, 1–20.[CrossRef]
    [Google Scholar]
  34. Saif, L. J. ( 2004; ). Animal coronaviruses: what can they teach us about the severe acute respiratory syndrome? Rev Sci Tech 23, 643–660.
    [Google Scholar]
  35. Thiel, V. & Weber, F. ( 2008; ). Interferon and cytokine responses to SARS-coronavirus infection. Cytokine Growth Factor Rev 19, 121–132.[CrossRef]
    [Google Scholar]
  36. VanCott, J. L., Brim, T. A., Simkins, R. A. & Saif, L. J. ( 1993; ). Isotype-specific antibody-secreting cells to transmissible gastroenteritis virus and porcine respiratory coronavirus in gut- and bronchus-associated lymphoid tissues of suckling pigs. J Immunol 150, 3990–4000.
    [Google Scholar]
  37. Van Reeth, K., Nauwynck, H. & Pensaert, M. ( 1996; ). Dual infections of feeder pigs with porcine reproductive and respiratory syndrome virus followed by porcine respiratory coronavirus or swine influenza virus: a clinical and virological study. Vet Microbiol 48, 325–335.[CrossRef]
    [Google Scholar]
  38. Van Reeth, K., Labarque, G., Nauwynck, H. & Pensaert, M. ( 1999; ). Differential production of proinflammatory cytokines in the pig lung during different respiratory virus infections: correlations with pathogenicity. Res Vet Sci 67, 47–52.[CrossRef]
    [Google Scholar]
  39. Wills, R. W., Gray, J. T., Fedorka-Cray, P. J., Yoon, K. J., Ladely, S. & Zimmerman, J. J. ( 2000; ). Synergism between porcine reproductive and respiratory syndrome virus (PRRSV) and Salmonella choleraesuis in swine. Vet Microbiol 71, 177–192.[CrossRef]
    [Google Scholar]
  40. Zhang, X., Alekseev, K., Jung, K., Vlasova, A., Hadya, N. & Saif, L. J. ( 2008; ). Cytokine responses in porcine respiratory coronavirus-infected pigs treated with corticosteroids as a model for severe acute respiratory syndrome. J Virol 82, 4420–4428.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.014001-0
Loading
/content/journal/jgv/10.1099/vir.0.014001-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error