1887

Abstract

A series of papillomavirus (PV) types have been isolated from different rodent species, and most of them belong to the genus . We isolated and sequenced the complete genome of a novel PV type (designated RnPV) from the oral cavity of the Norway rat (), as well as an L1 gene fragment from hair-follicle cells of the European beaver (). As inferred from amino acid sequence data, RnPV clustered within the +++-PV supertaxon as a member of the genus . The closest relatives of RnPV were McPV-2 and MmPV, and time estimates indicated that the genus originated in the late Cenozoic era. The close relationship of RnPV to other murid PV types supports the hypothesis of co-divergence between members of the genus and their hosts. However, the derived Neogene origin of the genus is much younger than has been considered for the Rodentia as the primary hosts, indicating that alternative interpretations of the phylogenetic trees should be conceived.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.012583-0
2009-11-01
2019-11-20
Loading full text...

Full text loading...

/deliver/fulltext/jgv/90/11/2609.html?itemId=/content/journal/jgv/10.1099/vir.0.012583-0&mimeType=html&fmt=ahah

References

  1. Adkins, R. M., Walton, A. H. & Honeycutt, R. L. ( 2003; ). Higher-level systematics of rodents and divergence time estimates based on two congruent nuclear genes. Mol Phylogenet Evol 26, 409–420.[CrossRef]
    [Google Scholar]
  2. Amtmann, E., Volm, M. & Wayss, K. ( 1984; ). Tumour induction in the rodent Mastomys natalensis by activation of endogenous papilloma virus genomes. Nature 308, 291–292.[CrossRef]
    [Google Scholar]
  3. Antonsson, A. & Hansson, B. G. ( 2002; ). Healthy skin of many animal species harbors papillomaviruses which are closely related to their human counterparts. J Virol 76, 12537–12542.[CrossRef]
    [Google Scholar]
  4. Bernard, H.-U., Calleja-Macias, I. E. & Dunn, S. T. ( 2006; ). Genome variation of human papillomavirus types: phylogenetic and medical implications. Int J Cancer 118, 1071–1076.[CrossRef]
    [Google Scholar]
  5. Bogaert, L., Martens, A., De Baere, C. & Gasthuys, F. ( 2005; ). Detection of bovine papillomavirus DNA on the normal skin and in the habitual surroundings of horses with and without equine sarcoids. Res Vet Sci 79, 253–258.[CrossRef]
    [Google Scholar]
  6. Chambers, G., Ellsmore, V. A., O'Brien, P. M., Reid, S. W. J., Love, S., Campo, M. S. & Nasir, L. ( 2003; ). Association of bovine papillomavirus with the equine sarcoid. J Gen Virol 84, 1055–1062.[CrossRef]
    [Google Scholar]
  7. Chen, Z., Terai, M., Fu, L., Herrero, R., DeSalle, R. & Burk, R. D. ( 2005; ). Diversifying selection in human papillomavirus type 16 lineages based on complete genome analyses. J Virol 79, 7014–7023.[CrossRef]
    [Google Scholar]
  8. de Villiers, E.-M., Fauquet, C., Broker, T. R., Bernard, H.-U. & zur Hausen, H. ( 2004; ). Classification of papillomaviruses. Virology 324, 17–27.[CrossRef]
    [Google Scholar]
  9. Drummond, A. J. & Rambaut, A. ( 2007; ). beast: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7, 214 [CrossRef]
    [Google Scholar]
  10. Forslund, O., Antonsson, A., Higgins, G., Ly, H., Delius, H., Hunziker, A. & de Villiers, E.-M. ( 2003; ). Nucleotide sequence and phylogenetic classification of candidate human papilloma virus type 92. Virology 312, 255–260.[CrossRef]
    [Google Scholar]
  11. García-Vallvé, S., Alonso, Á. & Bravo, I. G. ( 2005; ). Papillomaviruses: different genes have different histories. Trends Microbiol 13, 514–521.[CrossRef]
    [Google Scholar]
  12. Gibbons, A. ( 1995; ). The mystery of humanity's missing mutations. Science 267, 35–36.
    [Google Scholar]
  13. Gottschling, M., Köhler, A., Stockfleth, E. & Nindl, I. ( 2007a; ). Phylogenetic analysis of beta-papillomaviruses as inferred from nucleotide and amino acid sequence data. Mol Phylogenet Evol 42, 213–222.[CrossRef]
    [Google Scholar]
  14. Gottschling, M., Stamatakis, A., Nindl, I., Stockfleth, E., Alonso, Á. & Bravo, I. G. ( 2007b; ). Multiple evolutionary mechanisms drive papillomavirus diversification. Mol Biol Evol 24, 1242–1258.[CrossRef]
    [Google Scholar]
  15. Gottschling, M., Wibbelt, G., Wittstatt, U., Stockfleth, E. & Nindl, I. ( 2008; ). Novel papillomavirus isolates from Erinaceus europaeus (Erinaceidae, Insectivora) and the Cervidae (Artiodactyla), Cervus timorensis and Pudu puda, and phylogenetic analysis of partial sequence data. Virus Genes 36, 281–287.[CrossRef]
    [Google Scholar]
  16. Halpern, A. L. ( 2000; ). Comparison of papillomavirus and immunodeficiency virus evolutionary patterns in the context of a papillomavirus vaccine. J Clin Virol 19, 43–56.[CrossRef]
    [Google Scholar]
  17. Harpending, H. C., Batzer, M. A., Gurven, M., Jorde, L. B., Rogers, A. R. & Sherry, S. T. ( 1998; ). Genetic traces of ancient demography. Proc Natl Acad Sci U S A 95, 1961–1967.[CrossRef]
    [Google Scholar]
  18. Huchon, D., Madsen, O., Sibbald, M. J. J. B., Ament, K., Stanhope, M. J., Catzeflis, F., de Jong, W. W. & Douzery, E. J. P. ( 2002; ). Rodent phylogeny and a timescale for the evolution of glires: evidence from an extensive taxon sampling using three nuclear genes. Mol Biol Evol 19, 1053–1065.[CrossRef]
    [Google Scholar]
  19. Iwasaki, T., Maeda, H., Kameyama, Y., Moriyama, M., Kanai, S. & Kurata, T. ( 1997; ). Presence of a novel hamster oral papillomavirus in dysplastic lesions of hamster lingual mucosa induced by application of dimethylbenzanthracene and excisional wounding: molecular cloning and complete nucleotide sequence. J Gen Virol 78, 1087–1093.
    [Google Scholar]
  20. Jackson, A. ( 2005; ). The effect of paralogous lineages on the application of reconciliation analysis by cophylogeny mapping. Syst Biol 54, 127–145.[CrossRef]
    [Google Scholar]
  21. Jones, K. E., Patel, N. G., Levy, M. A., Storeygard, A., Balk, D., Gittleman, J. L. & Daszak, P. ( 2008; ). Global trends in emerging infectious diseases. Nature 451, 990–993.[CrossRef]
    [Google Scholar]
  22. Kidney, B. A. & Berrocal, A. ( 2008; ). Sarcoids in two captive tapirs (Tapirus bairdii): clinical, pathological and molecular study. Vet Dermatol 19, 380–384.[CrossRef]
    [Google Scholar]
  23. Mahy, B. W. & Brown, C. C. ( 2000; ). Emerging zoonoses: crossing the species barrier. Rev Sci Tech 19, 33–40.
    [Google Scholar]
  24. Montgelard, C., Forty, E., Arnal, V. & Matthee, C. A. ( 2008; ). Suprafamilial relationships among Rodentia and the phylogenetic effect of removing fast-evolving nucleotides in mitochondrial, exon and intron fragments. BMC Evol Biol 8, 321 [CrossRef]
    [Google Scholar]
  25. Müller, H. & Gissmann, L. ( 1978; ). Mastomys natalensis papilloma virus (MnPV), the causative agent of epithelial proliferations: characterization of the virus particle. J Gen Virol 41, 315–323.[CrossRef]
    [Google Scholar]
  26. Myers, G., Lu, H., Calef, C. & Leitner, T. ( 1996; ). Heterogeneity of papillomaviruses. Semin Cancer Biol 7, 349–358.[CrossRef]
    [Google Scholar]
  27. Nafz, J., Köhler, A., Ohnesorge, M., Nindl, I., Stockfleth, E. & Rösl, F. ( 2007; ). Persistence of Mastomys natalensis papillomavirus in multiple organs identifies novel targets for infection. J Gen Virol 88, 2670–2678.[CrossRef]
    [Google Scholar]
  28. Nafz, J., Schäfer, K., Chen, S. F., Bravo, I. G., Ibberson, M., Nindl, I., Stockfleth, E. & Rösl, F. ( 2008; ). A novel rodent papillomavirus isolated from anogenital lesions in its natural host. Virology 374, 186–197.[CrossRef]
    [Google Scholar]
  29. Narechania, A., Chen, Z., DeSalle, R. & Burk, R. D. ( 2005; ). Phylogenetic incongruence among oncogenic genital alpha human papillomaviruses. J Virol 79, 15503–15510.[CrossRef]
    [Google Scholar]
  30. Nindl, I., Gottschling, M. & Stockfleth, E. ( 2007; ). Human papillomaviruses and non-melanoma skin cancer: basic virology and clinical manifestations. Dis Markers 23, 247–259.[CrossRef]
    [Google Scholar]
  31. Ong, C.-K., Chan, S.-Y., Campo, M. S., Fujinaga, K., Mavromara-Nazos, P., Labropoulou, V., Pfister, H., Tay, S.-K., ter Meulen, J. & other authors ( 1993; ). Evolution of human papillomavirus type 18: an ancient phylogenetic root in Africa and intratype diversity reflect coevolution with human ethnic groups. J Virol 67, 6424–6431.
    [Google Scholar]
  32. Rector, A., Tachezy, R. & Van Ranst, M. ( 2004; ). A sequence-independent strategy for detection and cloning of circular DNA virus genomes by using multiply primed rolling-circle amplification. J Virol 78, 4993–4998.[CrossRef]
    [Google Scholar]
  33. Rector, A., Tachezy, R., Van Doorslaer, K., MacNamara, T., Burk, R. D., Sundberg, J. P. & Van Ranst, M. ( 2005; ). Isolation and cloning of a papillomavirus from a North American porcupine by using multiply primed rolling-circle amplification: the Erethizon dorsatum papillomavirus type 1. Virology 331, 449–456.[CrossRef]
    [Google Scholar]
  34. Rector, A., Lemey, P., Tachezy, R., Mostmans, S., Ghim, S.-J., Van Doorslaer, K., Roelke, M., Bush, M., Montali, R. J. & other authors ( 2007; ). Ancient papillomavirus–host co-speciation in Felidae. Genome Biol 8, R57 [CrossRef]
    [Google Scholar]
  35. Rowe, K. C., Reno, M. L., Richmond, D. M., Adkins, R. M. & Steppan, S. J. ( 2008; ). Pliocene colonization and adaptive radiations in Australia and New Guinea (Sahul): multilocus systematics of the old endemic rodents (Muroidea: Murinae). Mol Phylogenet Evol 47, 84–101.[CrossRef]
    [Google Scholar]
  36. Schulz, E., Gottschling, M., Bravo, I. G., Wittstatt, U., Stockfleth, E. & Nindl, I. ( 2009; ). Genomic characterization of the first insectivoran papillomavirus reveals an unusually long, second non-coding region and indicates a close relationship to Betapapillomavirus. J Gen Virol 90, 626–633.[CrossRef]
    [Google Scholar]
  37. Tan, C. H., Tachezy, R., Van Ranst, M., Chan, S.-Y., Bernard, H.-U. & Burk, R. D. ( 1994; ). The Mastomys natalensis papillomavirus: nucleotide sequence, genome organization, and phylogenetic relationship of a rodent papillomavirus involved in tumorigenesis of cutaneous epithelia. Virology 198, 534–541.[CrossRef]
    [Google Scholar]
  38. Terai, M., DeSalle, R. & Burk, R. D. ( 2002; ). Lack of canonical E6 and E7 open reading frames in bird papillomaviruses: Fringilla coelebs papillomavirus and Psittacus erithacus timneh papillomavirus. J Virol 76, 10020–10023.[CrossRef]
    [Google Scholar]
  39. Van Doorslaer, K., Rector, A., Jenson, A. B., Sundberg, J. P., Van Ranst, M. & Ghim, S.-J. ( 2007; ). Complete genomic characterization of a murine papillomavirus isolated from papillomatous lesions of a European harvest mouse (Micromys minutus). J Gen Virol 88, 1484–1488.[CrossRef]
    [Google Scholar]
  40. Van Ranst, M., Fuse, A., Fiten, P., Beuken, E., Pfister, H., Burk, R. D. & Opdenakker, G. ( 1992; ). Human papillomavirus type 13 and pygmy chimpanzee papillomavirus type 1: comparison of the genome organizations. Virology 190, 587–596.[CrossRef]
    [Google Scholar]
  41. Van Ranst, M., Kaplan, J. B., Sundberg, J. P. & Burk, R. D. ( 1995; ). Molecular evolution of papillomaviruses. In Molecular Basis of Virus Evolution, pp. 455–476. Edited by A. Gibbs, C. H. Calisher & F. García-Arenal. Cambridge: Cambridge University Press.
  42. Varsani, A., van der Walt, E., Heath, L., Rybicki, E. P., Williamson, A. L. & Martin, D. P. ( 2006; ). Evidence of ancient papillomavirus recombination. J Gen Virol 87, 2527–2531.[CrossRef]
    [Google Scholar]
  43. Wettstein, F. O., Barbosa, M. S. & Nasseri, M. ( 1987; ). Identification of the major cottontail rabbit papillomavirus late RNA cap site and mapping and quantitation of an E2 and minor E6 coding mRNA in papillomas and carcinomas. Virology 159, 321–328.[CrossRef]
    [Google Scholar]
  44. Wolfe, N. D., Dunavan, C. P. & Diamond, J. ( 2007; ). Origins of major human infectious diseases. Nature 447, 279–283.[CrossRef]
    [Google Scholar]
  45. Wood, C. E., Chen, Z., Cline, J. M., Miller, B. E. & Burk, R. D. ( 2007; ). Characterization and experimental transmission of an oncogenic papillomavirus in female macaques. J Virol 81, 6339–6345.[CrossRef]
    [Google Scholar]
  46. zur Hausen, H. ( 2002; ). Papillomaviruses and cancer: from basic studies to clinical application. Nat Rev Cancer 2, 342–350.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.012583-0
Loading
/content/journal/jgv/10.1099/vir.0.012583-0
Loading

Data & Media loading...

Supplements

(including all References) [ PDF] (169 KB)

PDF

[ PDF] (155 KB)

PDF

[ PDF] (343 KB)

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error