1887

Abstract

VP1-2, encoded by the UL36 gene of herpes simplex virus (HSV), is a large structural protein, conserved across the family , that is assembled into the tegument and is essential for virus replication. Current evidence indicates that VP1-2 is a central component in the tegumentation and envelopment processes and that it also possesses important roles in capsid transport and entry. However, any detailed mechanistic understanding of VP1-2 function(s) remains limited. This study characterized the replication of HSV-1 tsB7, a temperature-sensitive mutant restricted at the non-permissive temperature due to a defect in VP1-2 function. A tsB7 virus expressing green fluorescent protein-fused VP16 protein was used to track the accumulation and location of a major tegument protein. After infection at the permissive temperature and shift to the non-permissive temperature, the production of infectious virus ceased. VP1-2 accumulated in altered cytosolic clusters, together with VP16 and other virion proteins. Furthermore, correlating with the results of immunofluorescence, electron microscopy demonstrated abnormal cytosolic capsid clustering and a block in envelopment. As VP1-2 encompasses a ubiquitin-specific protease domain, the occurrence of ubiquitin-conjugated proteins during tsB7 infection was also examined at the non-permissive temperature. A striking overaccumulation was observed of ubiquitin-specific conjugates in cytoplasmic clusters, overlapping and adjacent to the VP1-2 clusters. These results are discussed in relation to the possible functions of VP1-2 in the assembly pathway and the nature of the defect in tsB7.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.012492-0
2009-10-01
2019-11-21
Loading full text...

Full text loading...

/deliver/fulltext/jgv/90/10/2353.html?itemId=/content/journal/jgv/10.1099/vir.0.012492-0&mimeType=html&fmt=ahah

References

  1. Abaitua, F. & O'Hare, P. ( 2008; ). Identification of a highly conserved, functional nuclear localization signal within the N-terminal region of herpes simplex virus type 1 VP1–2 tegument protein. J Virol 82, 5234–5244.[CrossRef]
    [Google Scholar]
  2. Batterson, W. & Roizman, B. ( 1983; ). Characterization of the herpes simplex virion-associated factor responsible for the induction of alpha genes. J Virol 46, 371–377.
    [Google Scholar]
  3. Batterson, W., Furlong, D. & Roizman, B. ( 1983; ). Molecular genetics of herpes simplex virus. VIII. Further characterization of a temperature-sensitive mutant defective in release of viral DNA and in other stages of the viral reproductive cycle. J Virol 45, 397–407.
    [Google Scholar]
  4. Bottcher, S., Maresch, C., Granzow, H., Klupp, B. G., Teifke, J. P. & Mettenleiter, T. C. ( 2008; ). Mutagenesis of the active-site cysteine in the ubiquitin-specific protease contained in large tegument protein pUL36 of pseudorabies virus impairs viral replication in vitro and neuroinvasion in vivo. J Virol 82, 6009–6016.[CrossRef]
    [Google Scholar]
  5. Bucks, M. A., O'Regan, K. J., Murphy, M. A., Wills, J. W. & Courtney, R. J. ( 2007; ). Herpes simplex virus type 1 tegument proteins VP1/2 and UL37 are associated with intranuclear capsids. Virology 361, 316–324.[CrossRef]
    [Google Scholar]
  6. Burch, A. D. & Weller, S. K. ( 2004; ). Nuclear sequestration of cellular chaperone and proteasomal machinery during herpes simplex virus type 1 infection. J Virol 78, 7175–7185.[CrossRef]
    [Google Scholar]
  7. Calistri, A., Sette, P., Salata, C., Cancellotti, E., Forghieri, C., Comin, A., Gottlinger, H., Campadelli-Fiume, G., Palu, G. & Parolin, C. ( 2007; ). Intracellular trafficking and maturation of herpes simplex virus type 1 gB and virus egress require functional biogenesis of multivesicular bodies. J Virol 81, 11468–11478.[CrossRef]
    [Google Scholar]
  8. Crump, C. M., Yates, C. & Minson, T. ( 2007; ). Herpes simplex virus type 1 cytoplasmic envelopment requires functional Vps4. J Virol 81, 7380–7387.[CrossRef]
    [Google Scholar]
  9. Desai, P. J. ( 2000; ). A null mutation in the UL36 gene of herpes simplex virus type 1 results in accumulation of unenveloped DNA-filled capsids in the cytoplasm of infected cells. J Virol 74, 11608–11618.[CrossRef]
    [Google Scholar]
  10. Desai, P., Sexton, G. L., McCaffery, J. M. & Person, S. ( 2001; ). A null mutation in the gene encoding the herpes simplex virus type 1 UL37 polypeptide abrogates virus maturation. J Virol 75, 10259–10271.[CrossRef]
    [Google Scholar]
  11. Fuchs, W., Klupp, B. G., Granzow, H. & Mettenleiter, T. C. ( 2004; ). Essential function of the pseudorabies virus UL36 gene product is independent of its interaction with the UL37 protein. J Virol 78, 11879–11889.[CrossRef]
    [Google Scholar]
  12. Fujimuro, M., Sawada, H. & Yokosawa, H. ( 1994; ). Production and characterization of monoclonal antibodies specific to multi-ubiquitin chains of polyubiquitinated proteins. FEBS Lett 349, 173–180.[CrossRef]
    [Google Scholar]
  13. Gibson, W. & Roizman, B. ( 1972; ). Proteins specified by herpes simplex virus. VIII. Characterization and composition of multiple capsid forms of subtypes 1 and 2. J Virol 10, 1044–1052.
    [Google Scholar]
  14. Granzow, H., Klupp, B. G. & Mettenleiter, T. C. ( 2005; ). Entry of pseudorabies virus: an immunogold-labeling study. J Virol 79, 3200–3205.[CrossRef]
    [Google Scholar]
  15. Heine, J. W., Honess, R. W., Cassai, E. & Roizman, B. ( 1974; ). Proteins specified by herpes simplex virus. XII. The virion polypeptides of type 1 strains. J Virol 14, 640–651.
    [Google Scholar]
  16. Jarosinski, K., Kattenhorn, L., Kaufer, B., Ploegh, H. & Osterrieder, N. ( 2007; ). A herpesvirus ubiquitin-specific protease is critical for efficient T cell lymphoma formation. Proc Natl Acad Sci U S A 104, 20025–20030.[CrossRef]
    [Google Scholar]
  17. Jovasevic, V., Liang, L. & Roizman, B. ( 2008; ). Proteolytic cleavage of VP1–2 is required for release of herpes simplex virus 1 DNA into the nucleus. J Virol 82, 3311–3319.[CrossRef]
    [Google Scholar]
  18. Klupp, B. G., Granzow, H., Mundt, E. & Mettenleiter, T. C. ( 2001; ). Pseudorabies virus UL37 gene product is involved in secondary envelopment. J Virol 75, 8927–8936.[CrossRef]
    [Google Scholar]
  19. Klupp, B. G., Fuchs, W., Granzow, H., Nixdorf, R. & Mettenleiter, T. C. ( 2002; ). Pseudorabies virus UL36 tegument protein physically interacts with the UL37 protein. J Virol 76, 3065–3071.[CrossRef]
    [Google Scholar]
  20. Knipe, D. M., Batterson, W., Nosal, C., Roizman, B. & Buchan, A. ( 1981; ). Molecular genetics of herpes simplex virus. VI. Characterization of a temperature-sensitive mutant defective in the expression of all early viral gene products. J Virol 38, 539–547.
    [Google Scholar]
  21. La Boissiere, S., Izeta, A., Malcomber, S. & O'Hare, P. ( 2004; ). Compartmentalization of VP16 in cells infected with recombinant herpes simplex virus expressing VP16–green fluorescent protein fusion proteins. J Virol 78, 8002–8014.[CrossRef]
    [Google Scholar]
  22. Lee, J. I., Luxton, G. W. & Smith, G. A. ( 2006; ). Identification of an essential domain in the herpesvirus VP1/2 tegument protein: the carboxy terminus directs incorporation into capsid assemblons. J Virol 80, 12086–12094.[CrossRef]
    [Google Scholar]
  23. Leege, T., Granzow, H., Fuchs, W., Klupp, B. & Mettenleiter, T. C. ( 2009; ). Phenotypic similarities and differences between UL37-deleted pseudorabies virus and herpes simplex virus type 1. J Gen Virol 90, 1560–1568.[CrossRef]
    [Google Scholar]
  24. Luxton, G. W., Haverlock, S., Coller, K. E., Antinone, S. E., Pincetic, A. & Smith, G. A. ( 2005; ). Targeting of herpesvirus capsid transport in axons is coupled to association with specific sets of tegument proteins. Proc Natl Acad Sci U S A 102, 5832–5837.[CrossRef]
    [Google Scholar]
  25. Luxton, G. W., Lee, J. I., Haverlock-Moyns, S., Schober, J. M. & Smith, G. A. ( 2006; ). The pseudorabies virus VP1/2 tegument protein is required for intracellular capsid transport. J Virol 80, 201–209.[CrossRef]
    [Google Scholar]
  26. McLean, C., Buckmaster, A., Hancock, D., Buchan, A., Fuller, A. & Minson, T. ( 1982; ). Monoclonal antibodies to three nonglycosylated antigens of herpes simplex virus type 2. J Gen Virol 63, 297–305.[CrossRef]
    [Google Scholar]
  27. McNabb, D. S. & Courtney, R. J. ( 1992a; ). Analysis of the UL36 open reading frame encoding the large tegument protein (ICP1/2) of herpes simplex virus type 1. J Virol 66, 7581–7584.
    [Google Scholar]
  28. McNabb, D. S. & Courtney, R. J. ( 1992b; ). Characterization of the large tegument protein (ICP1/2) of herpes simplex virus type 1. Virology 190, 221–232.[CrossRef]
    [Google Scholar]
  29. Mettenleiter, T. C. ( 2002; ). Herpesvirus assembly and egress. J Virol 76, 1537–1547.[CrossRef]
    [Google Scholar]
  30. Michael, K., Klupp, B. G., Mettenleiter, T. C. & Karger, A. ( 2006; ). Composition of pseudorabies virus particles lacking tegument protein US3, UL47, or UL49 or envelope glycoprotein E. J Virol 80, 1332–1339.[CrossRef]
    [Google Scholar]
  31. Rixon, F. ( 1993; ). Stucture and assembly of herpesviruses. Semin Virol 4, 135–144.[CrossRef]
    [Google Scholar]
  32. Roberts, A. P., Abaitua, F., O'Hare, P., McNab, D., Rixon, F. J. & Pasdeloup, D. ( 2009; ). Differing roles of inner tegument proteins pUL36 and pUL37 during entry of herpes simplex virus type 1 (HSV-1). J Virol 83, 105–116.[CrossRef]
    [Google Scholar]
  33. Skepper, J. N., Whiteley, A., Browne, H. & Minson, A. ( 2001; ). Herpes simplex virus nucleocapsids mature to progeny virions by an envelopment → deenvelopment → reenvelopment pathway. J Virol 75, 5697–5702.[CrossRef]
    [Google Scholar]
  34. Trus, B. L., Newcomb, W. W., Cheng, N., Cardone, G., Marekov, L., Homa, F. L., Brown, J. C. & Steven, A. C. ( 2007; ). Allosteric signaling and a nuclear exit strategy: binding of UL25/UL17 heterodimers to DNA-filled HSV-1 capsids. Mol Cell 26, 479–489.[CrossRef]
    [Google Scholar]
  35. Wang, J., Loveland, A. N., Kattenhorn, L. M., Ploegh, H. L. & Gibson, W. ( 2006; ). High-molecular-weight protein (pUL48) of human cytomegalovirus is a competent deubiquitinating protease: mutant viruses altered in its active-site cysteine or histidine are viable. J Virol 80, 6003–6012.[CrossRef]
    [Google Scholar]
  36. Ward, P. L., Avitabile, E., Campadelli-Fiume, G. & Roizman, B. ( 1998; ). Conservation of the architecture of the Golgi apparatus related to a differential organization of microtubules in polykaryocytes induced by syn mutants of herpes simplex virus 1. Virology 241, 189–199.[CrossRef]
    [Google Scholar]
  37. Zhou, Z.-H., Chen, D. H., Jakana, J., Rixon, F. J. & Chiu, W. ( 1999; ). Visualization of tegument–capsid interactions and DNA in intact herpes simplex virus type 1 virions. J Virol 73, 3210–3218.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.012492-0
Loading
/content/journal/jgv/10.1099/vir.0.012492-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error