1887

Abstract

Major immediate-early (MIE) transcriptional enhancers of cytomegaloviruses are key regulators that are regarded as determinants of virus replicative fitness and pathogenicity. The MIE locus of murine cytomegalovirus (mCMV) shows bidirectional gene-pair architecture, with a bipartite enhancer flanked by divergent core promoters. Here, we have constructed recombinant viruses mCMV-ΔEnh1 and mCMV-ΔEnh2 to study the impact of either enhancer component on bidirectional MIE gene transcription and on virus replication in cell culture and various host tissues that are relevant to CMV disease. The data revealed that the two unipartite enhancers can operate independently, but synergize in enhancing MIE gene expression early after infection. Kick-start transcription facilitated by the bipartite enhancer configuration, however, did not ultimately result in accelerated virus replication. We conclude that virus replication, once triggered, proceeds with a fixed speed and we propose that synergism between the components of the bipartite enhancer may rather increase the probability for transcription initiation.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.012245-0
2009-10-01
2019-11-12
Loading full text...

Full text loading...

/deliver/fulltext/jgv/90/10/2395.html?itemId=/content/journal/jgv/10.1099/vir.0.012245-0&mimeType=html&fmt=ahah

References

  1. Adachi, N. & Lieber, M. R. ( 2002; ). Bidirectional gene organization: a common architectural feature of the human genome. Cell 109, 807–809.[CrossRef]
    [Google Scholar]
  2. Angulo, A., Messerle, M., Koszinowski, U. H. & Ghazal, P. ( 1998; ). Enhancer requirement for murine cytomegalovirus growth and genetic complementation by the human cytomegalovirus enhancer. J Virol 72, 8502–8509.
    [Google Scholar]
  3. Angulo, A., Ghazal, P. & Messerle, M. ( 2000; ). The major immediate-early gene ie3 of mouse cytomegalovirus is essential for viral growth. J Virol 74, 11129–11136.[CrossRef]
    [Google Scholar]
  4. Bailey, T. L. & Gribskov, M. ( 1998; ). Combining evidence using p-values: application to sequence homology searches. Bioinformatics 14, 48–54.[CrossRef]
    [Google Scholar]
  5. Bain, M., Reeves, M. & Sinclair, J. ( 2006; ). Regulation of human cytomegalovirus gene expression by chromatin remodeling. In Cytomegaloviruses: Molecular Biology and Immunology, pp. 167–183. Edited by M. J. Reddehase. Wymondham, UK: Caister Academic Press.
  6. Baskar, J. F., Smith, P. P., Nilaver, G., Jupp, R. A., Hoffmann, S., Peffer, N. J., Tenney, D. J., Colberg-Poley, A. M., Ghazal, P. & Nelson, J. A. ( 1996; ). The enhancer domain of the human cytomegalovirus major immediate-early promoter determines cell type-specific expression in transgenic mice. J Virol 70, 3207–3214.
    [Google Scholar]
  7. Blackwood, E. M. & Kadonaga, J. T. ( 1998; ). Going the distance: a current view of enhancer action. Science 281, 60–63.[CrossRef]
    [Google Scholar]
  8. Boshart, M., Weber, F., Jahn, G., Dorsch-Häsler, K., Fleckenstein, B. & Schaffner, W. ( 1985; ). A very strong enhancer is located upstream of an immediate-early gene of human cytomegalovirus. Cell 41, 521–530.[CrossRef]
    [Google Scholar]
  9. Bühler, B., Keil, G. M., Weiland, F. & Koszinowski, U. H. ( 1990; ). Characterization of the murine cytomegalovirus early transcription unit e1 that is induced by immediate-early proteins. J Virol 64, 1907–1919.
    [Google Scholar]
  10. Busche, A., Angulo, A., Kay-Jackson, P., Ghazal, P. & Messerle, M. ( 2008; ). Phenotypes of major immediate-early gene mutants of mouse cytomegalovirus. Med Microbiol Immunol 197, 233–240.[CrossRef]
    [Google Scholar]
  11. Busche, A., Marquardt, A., Bleich, A., Ghazal, P., Angulo, A. & Messerle, M. ( 2009; ). The mouse cytomegalovirus immediate-early 1 gene is not required for establishment of latency or for reactivation in the lungs. J Virol 83, 4030–4038.[CrossRef]
    [Google Scholar]
  12. Campbell, A. E., Cavanaugh, V. J. & Slater, J. S. ( 2008; ). The salivary glands as a privileged site of cytomegalovirus immune evasion and persistence. Med Microbiol Immunol 197, 205–213.[CrossRef]
    [Google Scholar]
  13. Cardin, R. D., Abenes, G. B., Stoddard, C. A. & Mocarski, E. S. ( 1995; ). Murine cytomegalovirus IE2, an activator of gene expression, is dispensable for growth and latency in mice. Virology 209, 236–241.[CrossRef]
    [Google Scholar]
  14. Chatellard, P., Pankiewicz, R., Meier, E., Durrer, L., Sauvage, C. & Imhof, M. O. ( 2007; ). The IE2 promoter/enhancer region from mouse CMV provides high levels of therapeutic protein expression in mammalian cells. Biotechnol Bioeng 96, 106–117.[CrossRef]
    [Google Scholar]
  15. Ciocco-Schmitt, G. M., Karabekian, Z., Godfrey, E. W., Stenberg, R. M., Campbell, A. E. & Kerry, J. A. ( 2002; ). Identification and characterization of novel murine cytomegalovirus M112–113 (e1) gene products. Virology 294, 199–208.[CrossRef]
    [Google Scholar]
  16. Dorsch-Häsler, K., Keil, G. M., Weber, F., Jasin, M., Schaffner, W. & Koszinowski, U. H. ( 1985; ). A long and complex enhancer activates transcription of the gene coding for the highly abundant immediate early mRNA in murine cytomegalovirus. Proc Natl Acad Sci U S A 82, 8325–8329.[CrossRef]
    [Google Scholar]
  17. Fiering, S., Whitelaw, E. & Martin, D. I. K. ( 2000; ). To be or not to be active: the stochastic nature of enhancer action. Bioessays 22, 381–387.[CrossRef]
    [Google Scholar]
  18. Ghazal, P., Messerle, M., Osborn, K. & Angulo, A. ( 2003; ). An essential role of the enhancer for murine cytomegalovirus in vivo growth and pathogenesis. J Virol 77, 3217–3228.[CrossRef]
    [Google Scholar]
  19. Ghazal, P., Visser, A. E., Gustems, M., Garcia, R., Borst, E. M., Sullivan, K., Messerle, M. & Angulo, A. ( 2005; ). Elimination of ie1 significantly attenuates murine cytomegalovirus virulence but does not alter replicative capacity in cell culture. J Virol 79, 7182–7194.[CrossRef]
    [Google Scholar]
  20. Gribaudo, G., Riera, L., Lembo, D., De Andrea, M., Gariglio, M., Rudge, T. L., Johnson, L. F. & Landolfo, S. ( 2000; ). Murine cytomegalovirus stimulates cellular thymidylate synthase gene expression in quiescent cells and requires the enzyme for replication. J Virol 74, 4979–4987.[CrossRef]
    [Google Scholar]
  21. Grzimek, N. K. A., Podlech, J., Steffens, H.-P., Holtappels, R., Schmalz, S. & Reddehase, M. J. ( 1999; ). In vivo replication of recombinant murine cytomegalovirus driven by the paralogous major immediate-early promoter–enhancer of human cytomegalovirus. J Virol 73, 5043–5055.
    [Google Scholar]
  22. Gustems, M., Busche, A., Messerle, M., Ghazal, P. & Angulo, A. ( 2008; ). In vivo competence of murine cytomegalovirus under the control of the human cytomegalovirus major immediate-early enhancer in the establishment of latency and reactivation. J Virol 82, 10302–10307.[CrossRef]
    [Google Scholar]
  23. Jonjić, S., Mutter, W., Weiland, F., Reddehase, M. J. & Koszinowski, U. H. ( 1989; ). Site-restricted persistent cytomegalovirus infection after selective long-term depletion of CD4+ T-lymphocytes. J Exp Med 169, 1199–1212.[CrossRef]
    [Google Scholar]
  24. Keil, G. M., Fibi, M. R. & Koszinowski, U. H. ( 1985; ). Characterization of the major immediate-early polypeptides encoded by murine cytomegalovirus. J Virol 54, 422–428.
    [Google Scholar]
  25. Keil, G. M., Ebeling-Keil, A. & Koszinowski, U. H. ( 1987a; ). Immediate-early genes of murine cytomegalovirus: location, transcripts, and translation products. J Virol 61, 526–533.
    [Google Scholar]
  26. Keil, G. M., Ebeling-Keil, A. & Koszinowski, U. H. ( 1987b; ). Sequence and structural organization of murine cytomegalovirus immediate-early gene 1. J Virol 61, 1901–1908.
    [Google Scholar]
  27. Kurz, S., Steffens, H.-P., Mayer, A., Harris, J. R. & Reddehase, M. J. ( 1997; ). Latency versus persistence or intermittent recurrences: evidence for a latent state of murine cytomegalovirus in the lungs. J Virol 71, 2980–2987.
    [Google Scholar]
  28. Lee, E.-C., Yu, D., Martinez de Velasco, J., Tessarollo, L., Swing, D. A., Court, D. L., Jenkins, N. A. & Copeland, N. G. ( 2001; ). A highly efficient Escherichia coli-based chromosome engineering system adapted for recombinogenic targeting and subcloning of BAC DNA. Genomics 73, 56–65.[CrossRef]
    [Google Scholar]
  29. Lembo, D., Gribaudo, G., Hofer, A., Riera, L., Cornaglia, M., Mondo, A., Angeretti, A., Gariglio, M., Thelander, L. & Landolfo, S. ( 2000; ). Expression of an altered ribonucleotide reductase activity associated with the replication of murine cytomegalovirus in quiescent fibroblasts. J Virol 74, 11557–11565.[CrossRef]
    [Google Scholar]
  30. Li, Z. T., Jayasankar, S. & Gray, D. J. ( 2004; ). Bi-directional duplex promoters with duplicated enhancers significantly increase transgene expression in grape and tobacco. Transgenic Res 13, 143–154.[CrossRef]
    [Google Scholar]
  31. Liu, X. F., Yan, S., Abecassis, M. & Hummel, M. ( 2008; ). Establishment of murine cytomegalovirus latency in vivo is associated with changes in histone modifications and recruitment of transcriptional repressors to the major immediate-early promoter. J Virol 82, 10922–10931.[CrossRef]
    [Google Scholar]
  32. Manning, W. C. & Mocarski, E. S. ( 1988; ). Insertional mutagenesis of the murine cytomegalovirus genome: one prominent α gene (ie2) is dispensable for growth. Virology 167, 477–484.
    [Google Scholar]
  33. Maul, G. G. ( 2008; ). Initiation of cytomegalovirus infection at ND10. Curr Top Microbiol Immunol 325, 117–132.
    [Google Scholar]
  34. Maul, G. G. & Negorev, D. ( 2008; ). Differences between mouse and human cytomegalovirus interactions with their respective hosts at immediate early times of the replication cycle. Med Microbiol Immunol 197, 241–249.[CrossRef]
    [Google Scholar]
  35. Meier, J. L. & Stinski, M. F. ( 2006; ). Major immediate-early enhancer and its gene products. In Cytomegaloviruses: Molecular Biology and Immunology, pp. 151–166. Edited by M. J. Reddehase. Wymondham, UK: Caister Academic Press.
  36. Messerle, M., Keil, G. M. & Koszinowski, U. H. ( 1991; ). Structure and expression of murine cytomegalovirus immediate-early gene 2. J Virol 65, 1638–1643.
    [Google Scholar]
  37. Messerle, M., Bühler, B., Keil, G. M. & Koszinowski, U. H. ( 1992; ). Structural organization, expression, and functional characterization of the murine cytomegalovirus immediate-early gene 3. J Virol 66, 27–36.
    [Google Scholar]
  38. Murphy, J. C., Fischle, W., Verdin, E. & Sinclair, J. H. ( 2002; ). Control of cytomegalovirus lytic gene expression by histone acetylation. EMBO J 21, 1112–1120.[CrossRef]
    [Google Scholar]
  39. Podlech, J., Holtappels, R., Wirtz, N., Steffens, H.-P. & Reddehase, M. J. ( 1998; ). Reconstitution of CD8 T cells is essential for the prevention of multiple-organ cytomegalovirus histopathology after bone marrow transplantation. J Gen Virol 79, 2099–2104.
    [Google Scholar]
  40. Podlech, J., Holtappels, R., Grzimek, N. K. A. & Reddehase, M. J. ( 2002; ). Animal models: murine cytomegalovirus. In Immunology of Infection (2nd edn; Methods in Microbiology vol. 32), pp. 493–525. Edited by S. H. E. Kaufmann & D. Kabelitz. London: Academic Press.
  41. Rawlinson, W. D., Farrell, H. E. & Barrell, B. G. ( 1996; ). Analysis of the complete DNA sequence of murine cytomegalovirus. J Virol 70, 8833–8849.
    [Google Scholar]
  42. Reddehase, M. J., Simon, C. O., Seckert, C. K., Lemmermann, N. & Grzimek, N. K. A. ( 2008; ). Murine model of cytomegalovirus latency and reactivation. Curr Top Microbiol Immunol 325, 315–332.
    [Google Scholar]
  43. Sacher, T., Podlech, J., Mohr, C. A., Jordan, S., Ruzsics, Z., Reddehase, M. J. & Koszinowski, U. H. ( 2008; ). The major virus-producing cell type during murine cytomegalovirus infection, the hepatocyte, is not the source of virus dissemination in the host. Cell Host Microbe 3, 263–272.[CrossRef]
    [Google Scholar]
  44. Sandelin, A., Alkema, W., Engström, P., Wasserman, W. W. & Lenhard, B. ( 2004; ). jaspar: an open-access database for eukaryotic transcription factor binding profiles. Nucleic Acid Res 32, D91–D94.[CrossRef]
    [Google Scholar]
  45. Simon, C. O., Seckert, C. K., Dreis, D., Reddehase, M. J. & Grzimek, N. K. ( 2005; ). Role for tumor necrosis factor alpha in murine cytomegalovirus transcriptional reactivation in latently infected lungs. J Virol 79, 326–340.[CrossRef]
    [Google Scholar]
  46. Simon, C. O., Holtappels, R., Tervo, H.-M., Böhm, V., Däubner, T., Oehrlein-Karpi, S. A., Kühnapfel, B., Renzaho, A., Strand, D. & other authors ( 2006; ). CD8 T cells control cytomegalovirus latency by epitope-specific sensing of transcriptional reactivation. J Virol 80, 10436–10456.[CrossRef]
    [Google Scholar]
  47. Simon, C. O., Kühnapfel, B., Reddehase, M. J. & Grzimek, N. K. A. ( 2007; ). Murine cytomegalovirus major immediate-early enhancer region operating as a genetic switch in bidirectional gene pair transcription. J Virol 81, 7805–7810.[CrossRef]
    [Google Scholar]
  48. Sinzger, C., Digel, M. & Jahn, G. ( 2008; ). Cytomegalovirus cell tropism. Curr Top Microbiol Immunol 325, 63–83.
    [Google Scholar]
  49. Stinski, M. F. & Isomura, H. ( 2008; ). Role of the cytomegalovirus major immediate early enhancer in acute infection and reactivation from latency. Med Microbiol Immunol 197, 223–231.[CrossRef]
    [Google Scholar]
  50. Trinklein, N. D., Aldred, S. F., Hartman, S. J., Schroeder, D. I., Otillar, R. P. & Myers, R. M. ( 2004; ). An abundance of bidirectional promoters in the human genome. Genome Res 14, 62–66.
    [Google Scholar]
  51. Wagner, M., Jonjić, S., Koszinowski, U. H. & Messerle, M. ( 1999; ). Systematic excision of vector sequences from the BAC-cloned herpesvirus genome during virus reconstitution. J Virol 73, 7056–7060.
    [Google Scholar]
  52. Warming, S., Costantino, N., Court, D. L., Jenkins, N. A & Copeland, N. G. ( 2005; ). Simple and highly efficient BAC recombineering using galK selection. Nucleic Acids Res 33, e36 [CrossRef]
    [Google Scholar]
  53. Wilhelmi, V., Simon, C. O., Podlech, J., Böhm, V., Däubner, T., Emde, S., Strand, D., Renzaho, A., Lemmermann, N. A. W. & other authors ( 2008; ). Transactivation of cellular genes involved in nucleotide metabolism by the regulatory IE1 protein of murine cytomegalovirus is not critical for viral replicative fitness in quiescent cells and host tissues. J Virol 82, 9900–9916.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.012245-0
Loading
/content/journal/jgv/10.1099/vir.0.012245-0
Loading

Data & Media loading...

Supplements

vol. , part 10, pp. 2395–2401

Alignment of sequencing data [ PDF] (103 KB)



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error