1887

Abstract

Respiratory syncytial virus (RSV) is the leading cause of serious respiratory tract disease in children and calves; however, RSV vaccine development has been slow due to early observations that formalin-inactivated vaccines induced Th2-type immune responses and led to disease enhancement upon subsequent exposure. Hence, there is a need for novel adjuvants that will promote a protective Th1-type or balanced immune response against RSV. CpG oligodeoxynucleotides (ODNs), indolicidin, and polyphosphazene were examined for their ability to enhance antigen-specific immune responses and influence the Th-bias when co-formulated with a recombinant truncated bovine RSV (BRSV) fusion protein (ΔF). Mice immunized with ΔF co-formulated with CpG ODN, indolicidin, and polyphosphazene (ΔF/CpG/indol/PP) developed higher levels of ΔF-specific serum IgG, IgG1 and IgG2a antibodies when compared with ΔF alone, and displayed an increase in the frequency of gamma interferon-secreting cells and decreased interleukin (IL)-5 production by restimulated splenocytes, characteristic of a Th1 immune response. These results were observed in both C57BL/6 and BALB/c strains of mice. When evaluated in a BRSV challenge model, mice immunized with ΔF/CpG/indol/PP developed significantly higher levels of BRSV-neutralizing serum antibodies than mice immunized with the ΔF protein alone, and displayed significantly less pulmonary IL-4, IL-5, IL-13 and eotaxin and reduced eosinophilia after challenge. These results suggest that co-formulation of ΔF with CpG ODN, host defence peptide and polyphosphazene may result in a safe and effective vaccine for the prevention of BRSV and may have implications for the development of novel human RSV vaccines.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.011684-0
2009-08-01
2020-01-24
Loading full text...

Full text loading...

/deliver/fulltext/jgv/90/8/1892.html?itemId=/content/journal/jgv/10.1099/vir.0.011684-0&mimeType=html&fmt=ahah

References

  1. Alwan, W. H., Record, F. M. & Openshaw, P. J. ( 1992; ). CD4+ T cells clear virus but augment disease in mice infected with respiratory syncytial virus. Comparison with the effects of CD8+ T cells. Clin Exp Immunol 88, 527–536.
    [Google Scholar]
  2. An, L. L., Yang, Y. H., Ma, X. T., Lin, Y. M., Li, G., Song, Y. H. & Wu, K. F. ( 2005; ). LL-37 enhances adaptive antitumor immune response in a murine model when genetically fused with M-CSFRJ6-1 DNA vaccine. Leuk Res 29, 535–543.[CrossRef]
    [Google Scholar]
  3. Andrianov, A. K., Svirkin, Y. Y. & LeGolvan, M. P. ( 2004; ). Synthesis and biologically relevant properties of polyphosphazene polyacids. Biomacromolecules 5, 1999–2006.[CrossRef]
    [Google Scholar]
  4. Andrianov, A. K., Marin, A. & Roberts, B. E. ( 2005; ). Polyphosphazene polyelectrolytes: a link between the formation of noncovalent complexes with antigenic proteins and immunostimulating activity. Biomacromolecules 6, 1375–1379.[CrossRef]
    [Google Scholar]
  5. Antonis, A. F., Schrijver, R. S., Daus, F., Steverink, P. J., Stockhofe, N., Hensen, E. J., Langedijk, J. P. & Van Der Most, R. G. ( 2003; ). Vaccine-induced immunopathology during bovine respiratory syncytial virus infection: exploring the parameters of pathogenesis. J Virol 77, 12067–12073.[CrossRef]
    [Google Scholar]
  6. Baca-Estrada, M. E., Snider, M., Tikoo, S. K., Harland, R., Babiuk, L. A. & van Drunen Littel-van den Hurk, S. ( 1996; ). Immunogenicity of bovine herpesvirus 1 glycoprotein D in mice: effect of antigen form on the induction of cellular and humoral immune responses. Viral Immunol 9, 11–22.[CrossRef]
    [Google Scholar]
  7. Bangham, C. R., Openshaw, P. J., Ball, L. A., King, A. M., Wertz, G. W. & Askonas, B. A. ( 1986; ). Human and murine cytotoxic T cells specific to respiratory syncytial virus recognize the viral nucleoprotein (N), but not the major glycoprotein (G), expressed by vaccinia virus recombinants. J Immunol 137, 3973–3977.
    [Google Scholar]
  8. Bowdish, D. M., Davidson, D. J., Scott, M. G. & Hancock, R. E. ( 2005; ). Immunomodulatory activities of small host defense peptides. Antimicrob Agents Chemother 49, 1727–1732.[CrossRef]
    [Google Scholar]
  9. Brown, K. L. & Hancock, R. E. ( 2006; ). Cationic host defense (antimicrobial) peptides. Curr Opin Immunol 18, 24–30.[CrossRef]
    [Google Scholar]
  10. Cannon, M. J., Openshaw, P. J. & Askonas, B. A. ( 1988; ). Cytotoxic T cells clear virus but augment lung pathology in mice infected with respiratory syncytial virus. J Exp Med 168, 1163–1168.[CrossRef]
    [Google Scholar]
  11. Castilow, E. M., Meyerholz, D. K. & Varga, S. M. ( 2008; ). IL-13 is required for eosinophil entry into the lung during respiratory syncytial virus vaccine-enhanced disease. J Immunol 180, 2376–2384.[CrossRef]
    [Google Scholar]
  12. Collins, P. L. & Crowe, J. E., Jr ( 2007; ). Respiratory syncytial virus and metapneumovirus. In Fields Virology, 5th edn, vol. 2, p. 1601. Edited by D. M. Knipe & P. M. Howley. Philadelphia: Lippincott Williams & Wilkins.
  13. Collins, P. L., Huang, Y. T. & Wertz, G. W. ( 1984; ). Nucleotide sequence of the gene encoding the fusion (F) glycoprotein of human respiratory syncytial virus. Proc Natl Acad Sci U S A 81, 7683–7687.[CrossRef]
    [Google Scholar]
  14. Davis, H. L., Weeratna, R., Waldschmidt, T. J., Tygrett, L., Schorr, J. & Krieg, A. M. ( 1998; ). CpG DNA is a potent enhancer of specific immunity in mice immunized with recombinant hepatitis B surface antigen. J Immunol 160, 870–876.
    [Google Scholar]
  15. Delgado, M. F., Coviello, S., Monsalvo, A. C., Melendi, G. A., Hernandez, J. Z., Batalle, J. P., Diaz, L., Trento, A., Chang, H. Y. & other authors ( 2009; ). Lack of antibody affinity maturation due to poor Toll-like receptor stimulation leads to enhanced respiratory syncytial virus disease. Nat Med 15, 34–41.[CrossRef]
    [Google Scholar]
  16. de Waal, L., Suzer, Y., Wyatt, L. S., Sintnicolaas, K., Sutter, G., Moss, B., Osterhaus, A. D. & de Swart, R. L. ( 2006; ). T cell responses to respiratory syncytial virus fusion and attachment proteins in human peripheral blood mononuclear cells. Viral Immunol 19, 669–678.[CrossRef]
    [Google Scholar]
  17. Durbin, J. E., Johnson, T. R., Durbin, R. K., Mertz, S. E., Morotti, R. A., Peebles, R. S. & Graham, B. S. ( 2002; ). The role of IFN in respiratory syncytial virus pathogenesis. J Immunol 168, 2944–2952.[CrossRef]
    [Google Scholar]
  18. Fenton, C., Scott, L. J. & Plosker, G. L. ( 2004; ). Palivizumab: a review of its use as prophylaxis for serious respiratory syncytial virus infection. Paediatr Drugs 6, 177–197.[CrossRef]
    [Google Scholar]
  19. Fritz, J. H., Brunner, S., Birnstiel, M. L., Buschle, M., Gabain, A., Mattner, F. & Zauner, W. ( 2004; ). The artificial antimicrobial peptide KLKLLLLLKLK induces predominantly a Th2-type immune response to co-injected antigens. Vaccine 22, 3274–3284.[CrossRef]
    [Google Scholar]
  20. Gershwin, L. J. ( 2007; ). Bovine respiratory syncytial virus infection: immunopathogenic mechanisms. Anim Health Res Rev 8, 207–213.[CrossRef]
    [Google Scholar]
  21. Glezen, W. P., Taber, L. H., Frank, A. L. & Kasel, J. A. ( 1986; ). Risk of primary infection and reinfection with respiratory syncytial virus. Am J Dis Child 140, 543–546.
    [Google Scholar]
  22. Graham, B. S., Johnson, T. R. & Peebles, R. S. ( 2000; ). Immune-mediated disease pathogenesis in respiratory syncytial virus infection. Immunopharmacology 48, 237–247.[CrossRef]
    [Google Scholar]
  23. Hall, C. B., Walsh, E. E., Long, C. E. & Schnabel, K. C. ( 1991; ). Immunity to and frequency of reinfection with respiratory syncytial virus. J Infect Dis 163, 693–698.[CrossRef]
    [Google Scholar]
  24. Hancock, R. E. ( 2001; ). Cationic peptides: effectors in innate immunity and novel antimicrobials. Lancet Infect Dis 1, 156–164.[CrossRef]
    [Google Scholar]
  25. Hancock, G. E., Hahn, D. J., Speelman, D. J., Hildreth, S. W., Pillai, S. & McQueen, K. ( 1994; ). The pulmonary immune response of BALB/c mice vaccinated with the fusion protein of respiratory syncytial virus. Vaccine 12, 267–274.[CrossRef]
    [Google Scholar]
  26. Hancock, G. E., Speelman, D. J., Frenchick, P. J., Mineo-Kuhn, M. M., Baggs, R. B. & Hahn, D. J. ( 1995; ). Formulation of the purified fusion protein of respiratory syncytial virus with the saponin QS-21 induces protective immune responses in BALB/c mice that are similar to those generated by experimental infection. Vaccine 13, 391–400.[CrossRef]
    [Google Scholar]
  27. Hancock, G. E., Heers, K. M., Smith, J. D., Scheuer, C. A., Ibraghimov, A. R. & Pryharski, K. S. ( 2001; ). CpG containing oligodeoxynucleotides are potent adjuvants for parenteral vaccination with the fusion (F) protein of respiratory syncytial virus (RSV). Vaccine 19, 4874–4882.[CrossRef]
    [Google Scholar]
  28. Ioannou, X. P., Gomis, S. M., Karvonen, B., Hecker, R., Babiuk, L. A. & van Drunen Littel-van den Hurk, S. ( 2002; ). CpG-containing oligodeoxynucleotides, in combination with conventional adjuvants, enhance the magnitude and change the bias of the immune responses to a herpesvirus glycoprotein. Vaccine 21, 127–137.[CrossRef]
    [Google Scholar]
  29. Isaacs, D. ( 1991; ). Viral subunit vaccines. Lancet 337, 1223–1224.[CrossRef]
    [Google Scholar]
  30. Johnson, P. R. & Collins, P. L. ( 1988; ). The fusion glycoproteins of human respiratory syncytial virus of subgroups A and B: sequence conservation provides a structural basis for antigenic relatedness. J Gen Virol 69, 2623–2628.[CrossRef]
    [Google Scholar]
  31. Johnson, T. R., Parker, R. A., Johnson, J. E. & Graham, B. S. ( 2003; ). IL-13 is sufficient for respiratory syncytial virus G glycoprotein-induced eosinophilia after respiratory syncytial virus challenge. J Immunol 170, 2037–2045.[CrossRef]
    [Google Scholar]
  32. Klinman, D. M. ( 2004; ). Immunotherapeutic uses of CpG oligodeoxynucleotides. Nat Rev Immunol 4, 249–258.[CrossRef]
    [Google Scholar]
  33. Klinman, D. M., Yi, A. K., Beaucage, S. L., Conover, J. & Krieg, A. M. ( 1996; ). CpG motifs present in bacterial DNA rapidly induce lymphocytes to secrete interleukin 6, interleukin 12, and interferon γ. Proc Natl Acad Sci U S A 93, 2879–2883.[CrossRef]
    [Google Scholar]
  34. Klinman, D. M., Barnhart, K. M. & Conover, J. ( 1999; ). CpG motifs as immune adjuvants. Vaccine 17, 19–25.[CrossRef]
    [Google Scholar]
  35. Kovacs-Nolan, J., Latimer, L., Landi, A., Jenssen, H., Hancock, R. E. W., Babiuk, L. A. & van Drunen Littel-van den Hurk, S. ( 2009; ). The novel adjuvant combination of CpG ODN, indolicidin and polyphosphazene induces potent antibody- and cell-mediated immune responses in mice. Vaccine 27, 2055–2064.[CrossRef]
    [Google Scholar]
  36. Krieg, A. M. ( 2006; ). Therapeutic potential of Toll-like receptor 9 activation. Nat Rev Drug Discov 5, 471–484.[CrossRef]
    [Google Scholar]
  37. Krieg, A. M., Yi, A. K., Matson, S., Waldschmidt, T. J., Bishop, G. A., Teasdale, R., Koretzky, G. A. & Klinman, D. M. ( 1995; ). CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 374, 546–549.[CrossRef]
    [Google Scholar]
  38. Kurosaka, K., Chen, Q., Yarovinsky, F., Oppenheim, J. J. & Yang, D. ( 2005; ). Mouse cathelin-related antimicrobial peptide chemoattracts leukocytes using formyl peptide receptor-like 1/mouse formyl peptide receptor-like 2 as the receptor and acts as an immune adjuvant. J Immunol 174, 6257–6265.[CrossRef]
    [Google Scholar]
  39. Laemmli, U. K. ( 1970; ). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.[CrossRef]
    [Google Scholar]
  40. Lingnau, K., Egyed, A., Schellack, C., Mattner, F., Buschle, M. & Schmidt, W. ( 2002; ). Poly-l-arginine synergizes with oligodeoxynucleotides containing CpG-motifs (CpG-ODN) for enhanced and prolonged immune responses and prevents the CpG-ODN-induced systemic release of pro-inflammatory cytokines. Vaccine 20, 3498–3508.[CrossRef]
    [Google Scholar]
  41. Lopez, J. A., Bustos, R., Orvell, C., Berois, M., Arbiza, J., Garcia-Barreno, B. & Melero, J. A. ( 1998; ). Antigenic structure of human respiratory syncytial virus fusion glycoprotein. J Virol 72, 6922–6928.
    [Google Scholar]
  42. Mapletoft, J. W., Oumouna, M., Kovacs-Nolan, J., Latimer, L., Mutwiri, G., Babiuk, L. A. & van Drunen Littel-van den Hurk, S. ( 2008; ). Intranasal immunization of mice with a formalin-inactivated bovine respiratory syncytial virus vaccine co-formulated with CpG oligodeoxynucleotides and polyphosphazenes results in enhanced protection. J Gen Virol 89, 250–260.[CrossRef]
    [Google Scholar]
  43. McCluskie, M. J. & Krieg, A. M. ( 2006; ). Enhancement of infectious disease vaccines through TLR9-dependent recognition of CpG DNA. Curr Top Microbiol Immunol 311, 155–178.
    [Google Scholar]
  44. McNeal, M. M., Rae, M. N. & Ward, R. L. ( 1999; ). Effects of different adjuvants on rotavirus antibody responses and protection in mice following intramuscular immunization with inactivated rotavirus. Vaccine 17, 1573–1580.[CrossRef]
    [Google Scholar]
  45. Meyer, G., Deplanche, M. & Schelcher, F. ( 2008; ). Human and bovine respiratory syncytial virus vaccine research and development. Comp Immunol Microbiol Infect Dis 31, 191–225.[CrossRef]
    [Google Scholar]
  46. Muelenaer, P. M., Henderson, F. W., Hemming, V. G., Walsh, E. E., Anderson, L. J., Prince, G. A. & Murphy, B. R. ( 1991; ). Group-specific serum antibody responses in children with primary and recurrent respiratory syncytial virus infections. J Infect Dis 164, 15–21.[CrossRef]
    [Google Scholar]
  47. Mutwiri, G., Benjamin, P., Soita, H., Townsend, H., Yost, R., Roberts, B., Andrianov, A. K. & Babiuk, L. A. ( 2007; ). Poly[di(sodium carboxylatoethylphenoxy)phosphazene] (PCEP) is a potent enhancer of mixed Th1/Th2 immune responses in mice immunized with influenza virus antigens. Vaccine 25, 1204–1213.[CrossRef]
    [Google Scholar]
  48. Palframan, R. T., Collins, P. D., Williams, T. J. & Rankin, S. M. ( 1998; ). Eotaxin induces a rapid release of eosinophils and their progenitors from the bone marrow. Blood 91, 2240–2248.
    [Google Scholar]
  49. Payne, L. G. & Andrianov, A. K. ( 1998; ). Protein release from polyphosphazene matrices. Adv Drug Deliv Rev 31, 185–196.[CrossRef]
    [Google Scholar]
  50. Payne, L. G., Jenkins, S. A., Woods, A. L., Grund, E. M., Geribo, W. E., Loebelenz, J. R., Andrianov, A. K. & Roberts, B. E. ( 1998; ). Poly[di(carboxylatophenoxy)phosphazene] (PCPP) is a potent immunoadjuvant for an influenza vaccine. Vaccine 16, 92–98.[CrossRef]
    [Google Scholar]
  51. Perrie, Y., Mohammed, A. R., Kirby, D. J., McNeil, S. E. & Bramwell, V. W. ( 2008; ). Vaccine adjuvant systems: enhancing the efficacy of sub-unit protein antigens. Int J Pharm 364, 272–280.[CrossRef]
    [Google Scholar]
  52. Polack, F. P., Teng, M. N., Collins, P. L., Prince, G. A., Exner, M., Regele, H., Lirman, D. D., Rabold, R., Hoffman, S. J. & other authors ( 2002; ). A role for immune complexes in enhanced respiratory syncytial virus disease. J Exp Med 196, 859–865.[CrossRef]
    [Google Scholar]
  53. Prince, G. A., Mond, J. J., Porter, D. D., Yim, K. C., Lan, S. J. & Klinman, D. M. ( 2003; ). Immunoprotective activity and safety of a respiratory syncytial virus vaccine: mucosal delivery of fusion glycoprotein with a CpG oligodeoxynucleotide adjuvant. J Virol 77, 13156–13160.[CrossRef]
    [Google Scholar]
  54. Rankin, S. M., Conroy, D. M. & Williams, T. J. ( 2000; ). Eotaxin and eosinophil recruitment: implications for human disease. Mol Med Today 6, 20–27.[CrossRef]
    [Google Scholar]
  55. Selsted, M. E., Novotny, M. J., Morris, W. L., Tang, Y. Q., Smith, W. & Cullor, J. S. ( 1992; ). Indolicidin, a novel bactericidal tridecapeptide amide from neutrophils. J Biol Chem 267, 4292–4295.
    [Google Scholar]
  56. Shay, D. K., Holman, R. C., Newman, R. D., Liu, L. L., Stout, J. W. & Anderson, L. J. ( 1999; ). Bronchiolitis-associated hospitalizations among US children, 1980–1996. JAMA 282, 1440–1446.[CrossRef]
    [Google Scholar]
  57. Sigurs, N., Bjarnason, R., Sigurbergsson, F., Kjellman, B. & Bjorksten, B. ( 1995; ). Asthma and immunoglobulin E antibodies after respiratory syncytial virus bronchiolitis: a prospective cohort study with matched controls. Pediatrics 95, 500–505.
    [Google Scholar]
  58. Sigurs, N., Bjarnason, R., Sigurbergsson, F. & Kjellman, B. ( 2000; ). Respiratory syncytial virus bronchiolitis in infancy is an important risk factor for asthma and allergy at age 7. Am J Respir Crit Care Med 161, 1501–1507.[CrossRef]
    [Google Scholar]
  59. Srikiatkhachorn, A. & Braciale, T. J. ( 1997; ). Virus-specific CD8+ T lymphocytes downregulate T helper cell type 2 cytokine secretion and pulmonary eosinophilia during experimental murine respiratory syncytial virus infection. J Exp Med 186, 421–432.[CrossRef]
    [Google Scholar]
  60. Taylor, G., Stott, E. J., Bew, M., Fernie, B. F., Cote, P. J., Collins, A. P., Hughes, M. & Jebbett, J. ( 1984; ). Monoclonal antibodies protect against respiratory syncytial virus infection in mice. Immunology 52, 137–142.
    [Google Scholar]
  61. Valarcher, J. F. & Taylor, G. ( 2007; ). Bovine respiratory syncytial virus infection. Vet Res 38, 153–180.[CrossRef]
    [Google Scholar]
  62. Van der Poel, W. H., Brand, A., Kramps, J. A. & Van Oirschot, J. T. ( 1994; ). Respiratory syncytial virus infections in human beings and in cattle. J Infect 29, 215–228.[CrossRef]
    [Google Scholar]
  63. Viuff, B., Tjornehoj, K., Larsen, L. E., Rontved, C. M., Uttenthal, A., Ronsholt, L. & Alexandersen, S. ( 2002; ). Replication and clearance of respiratory syncytial virus: apoptosis is an important pathway of virus clearance after experimental infection with bovine respiratory syncytial virus. Am J Pathol 161, 2195–2207.[CrossRef]
    [Google Scholar]
  64. Walsh, E. E. ( 1994; ). Humoral, mucosal, and cellular immune response to topical immunization with a subunit respiratory syncytial virus vaccine. J Infect Dis 170, 345–350.[CrossRef]
    [Google Scholar]
  65. Walsh, E. E., Schlesinger, J. J. & Brandriss, M. W. ( 1984; ). Protection from respiratory syncytial virus infection in cotton rats by passive transfer of monoclonal antibodies. Infect Immun 43, 756–758.
    [Google Scholar]
  66. Waris, M. E., Tsou, C., Erdman, D. D., Zaki, S. R. & Anderson, L. J. ( 1996; ). Respiratory syncytial virus infection in BALB/c mice previously immunized with formalin-inactivated virus induces enhanced pulmonary inflammatory response with a predominant Th2-like cytokine pattern. J Virol 70, 2852–2860.
    [Google Scholar]
  67. Wu, J. Y., Wade, W. F. & Taylor, R. K. ( 2001; ). Evaluation of cholera vaccines formulated with toxin-coregulated pilin peptide plus polymer adjuvant in mice. Infect Immun 69, 7695–7702.[CrossRef]
    [Google Scholar]
  68. Zimmer, G., Conzelmann, K. K. & Herrler, G. ( 2002; ). Cleavage at the furin consensus sequence RAR/KR(109) and presence of the intervening peptide of the respiratory syncytial virus fusion protein are dispensable for virus replication in cell culture. J Virol 76, 9218–9224.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.011684-0
Loading
/content/journal/jgv/10.1099/vir.0.011684-0
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error