1887

Abstract

Rev remains a hot topic. In this review, we revisit the insights that have been gained into the control of gene expression by the retroviral protein Rev and speculate on where current research is leading. We outline what is known about the role of Rev in translation and encapsidation and how these are linked to its more traditional role of nuclear export, underlining the multifaceted nature of this small viral protein. We discuss what more is to be learned in these fields and why continuing research on these 116 amino acids and understanding their function is still important in devising methods to combat AIDS.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.011460-0
2009-06-01
2019-11-13
Loading full text...

Full text loading...

/deliver/fulltext/jgv/90/6/1303.html?itemId=/content/journal/jgv/10.1099/vir.0.011460-0&mimeType=html&fmt=ahah

References

  1. Afonina, E., Neumann, M. & Pavlakis, G. N. ( 1997; ). Preferential binding of poly(A)-binding protein 1 to an inhibitory RNA element in the human immunodeficiency virus type 1 gag mRNA. J Biol Chem 272, 2307–2311.[CrossRef]
    [Google Scholar]
  2. Alvarez, E., Menendez-Arias, L. & Carrasco, L. ( 2003; ). The eukaryotic translation initiation factor 4GI is cleaved by different retroviral proteases. J Virol 77, 12392–12400.[CrossRef]
    [Google Scholar]
  3. Alvarez, E., Castello, A., Menendez-Arias, L. & Carrasco, L. ( 2006; ). HIV protease cleaves poly(A)-binding protein. Biochem J 396, 219–226.[CrossRef]
    [Google Scholar]
  4. Annamalai, P., Apte, S., Wilkens, S. & Rao, A. L. ( 2005; ). Deletion of highly conserved arginine-rich RNA binding motif in cowpea chlorotic mottle virus capsid protein results in virion structural alterations and RNA packaging constraints. J Virol 79, 3277–3288.[CrossRef]
    [Google Scholar]
  5. Anson, D. S. & Fuller, M. ( 2003; ). Rational development of a HIV-1 gene therapy vector. J Gene Med 5, 829–838.[CrossRef]
    [Google Scholar]
  6. Ariumi, Y. & Trono, D. ( 2006; ). Ataxia-telangiectasia-mutated (ATM) protein can enhance human immunodeficiency virus type 1 replication by stimulating Rev function. J Virol 80, 2445–2452.[CrossRef]
    [Google Scholar]
  7. Arrigo, S. J. & Chen, I. S. ( 1991; ). Rev is necessary for translation but not cytoplasmic accumulation of HIV-1 vif, vpr, and env/vpu 2 RNAs. Genes Dev 5, 808–819.[CrossRef]
    [Google Scholar]
  8. Arrigo, S. J., Heaphy, S. & Haines, J. K. ( 1992; ). In vivo binding of wild-type and mutant human immunodeficiency virus type 1 Rev proteins: implications for function. J Virol 66, 5569–5575.
    [Google Scholar]
  9. Aschoff, J. M., Foster, D. & Coffin, J. M. ( 1999; ). Point mutations in the avian sarcoma/leukosis virus 3′ untranslated region result in a packaging defect. J Virol 73, 7421–7429.
    [Google Scholar]
  10. Askjaer, P., Jensen, T. H., Nilsson, J., Englmeier, L. & Kjems, J. ( 1998; ). The specificity of the CRM1–Rev nuclear export signal interaction is mediated by RanGTP. J Biol Chem 273, 33414–33422.[CrossRef]
    [Google Scholar]
  11. Baccam, P., Thompson, R. J., Li, Y., Sparks, W. O., Belshan, M., Dorman, K. S., Wannemuehler, Y., Oaks, J. L., Cornette, J. L. & Carpenter, S. ( 2003; ). Subpopulations of equine infectious anemia virus Rev coexist in vivo and differ in phenotype. J Virol 77, 12122–12131.[CrossRef]
    [Google Scholar]
  12. Barksdale, S. K. & Baker, C. C. ( 1995; ). The human immunodeficiency virus type 1 Rev protein and the Rev-responsive element counteract the effect of an inhibitory 5′ splice site in a 3′ untranslated region. Mol Cell Biol 15, 2962–2971.
    [Google Scholar]
  13. Belshan, M., Harris, M. E., Shoemaker, A. E., Hope, T. J. & Carpenter, S. ( 1998; ). Biological characterization of Rev variation in equine infectious anemia virus. J Virol 72, 4421–4426.
    [Google Scholar]
  14. Belshan, M., Park, G. S., Bilodeau, P., Stoltzfus, C. M. & Carpenter, S. ( 2000; ). Binding of equine infectious anemia virus rev to an exon splicing enhancer mediates alternative splicing and nuclear export of viral mRNAs. Mol Cell Biol 20, 3550–3557.[CrossRef]
    [Google Scholar]
  15. Berger, J., Aepinus, C., Dobrovnik, M., Fleckenstein, B., Hauber, J. & Bohnlein, E. ( 1991; ). Mutational analysis of functional domains in the HIV-1 Rev trans-regulatory protein. Virology 183, 630–635.[CrossRef]
    [Google Scholar]
  16. Berkowitz, R. D., Hammarskjold, M. L., Helga-Maria, C., Rekosh, D. & Goff, S. P. ( 1995; ). 5′ regions of HIV-1 RNAs are not sufficient for encapsidation: implications for the HIV-1 packaging signal. Virology 212, 718–723.[CrossRef]
    [Google Scholar]
  17. Berkowitz, R., Fisher, J. & Goff, S. P. ( 1996; ). RNA packaging. Curr Top Microbiol Immunol 214, 177–218.
    [Google Scholar]
  18. Bernstein, P., Peltz, S. W. & Ross, J. ( 1989; ). The poly(A)–poly(A)-binding protein complex is a major determinant of mRNA stability in vitro. Mol Cell Biol 9, 659–670.
    [Google Scholar]
  19. Bevec, D. & Hauber, J. ( 1997; ). Eukaryotic initiation factor 5A activity and HIV-1 Rev function. Biol Signals 6, 124–133.[CrossRef]
    [Google Scholar]
  20. Bevec, D., Jaksche, H., Oft, M., Wohl, T., Himmelspach, M., Pacher, A., Schebesta, M., Koettnitz, K., Dobrovnik, M. & other authors ( 1996; ). Inhibition of HIV-1 replication in lymphocytes by mutants of the Rev cofactor eIF-5A. Science 271, 1858–1860.[CrossRef]
    [Google Scholar]
  21. Bogerd, H. & Greene, W. C. ( 1993; ). Dominant negative mutants of human T-cell leukemia virus type I Rex and human immunodeficiency virus type 1 Rev fail to multimerize in vivo. J Virol 67, 2496–2502.
    [Google Scholar]
  22. Bogerd, H. P., Fridell, R. A., Madore, S. & Cullen, B. R. ( 1995; ). Identification of a novel cellular cofactor for the Rev/Rex class of retroviral regulatory proteins. Cell 82, 485–494.[CrossRef]
    [Google Scholar]
  23. Bohnlein, E., Berger, J. & Hauber, J. ( 1991; ). Functional mapping of the human immunodeficiency virus type 1 Rev RNA binding domain: new insights into the domain structure of Rev and Rex. J Virol 65, 7051–7055.
    [Google Scholar]
  24. Bolinger, C. & Boris-Lawrie, K. ( 2009; ). Mechanisms employed by retroviruses to exploit host factors for translational control of a complex proteome. Retrovirology 6, 8 [CrossRef]
    [Google Scholar]
  25. Bolinger, C., Yilmaz, A., Hartman, T. R., Kovacic, M. B., Fernandez, S., Ye, J., Forget, M., Green, P. L. & Boris-Lawrie, K. ( 2007; ). RNA helicase A interacts with divergent lymphotropic retroviruses and promotes translation of human T-cell leukemia virus type 1. Nucleic Acids Res 35, 2629–2642.[CrossRef]
    [Google Scholar]
  26. Boris-Lawrie, K., Roberts, T. M. & Hull, S. ( 2001; ). Retroviral RNA elements integrate components of post-transcriptional gene expression. Life Sci 69, 2697–2709.[CrossRef]
    [Google Scholar]
  27. Braddock, M., Muckenthaler, M., White, M. R., Thorburn, A. M., Sommerville, J., Kingsman, A. J. & Kingsman, S. M. ( 1994; ). Intron-less RNA injected into the nucleus of Xenopus oocytes accesses a regulated translation control pathway. Nucleic Acids Res 22, 5255–5264.[CrossRef]
    [Google Scholar]
  28. Brandt, S., Blissenbach, M., Grewe, B., Konietzny, R., Grunwald, T. & Überla, K. ( 2007; ). Rev proteins of human and simian immunodeficiency virus enhance RNA encapsidation. PLoS Pathog 3, e54 [CrossRef]
    [Google Scholar]
  29. Brass, A. L., Dykxhoorn, D. M., Benita, Y., Yan, N., Engelman, A., Xavier, R. J., Lieberman, J. & Elledge, S. J. ( 2008; ). Identification of host proteins required for HIV infection through a functional genomic screen. Science 319, 921–926.[CrossRef]
    [Google Scholar]
  30. Bushell, M., Wood, W., Carpenter, G., Pain, V. M., Morley, S. J. & Clemens, M. J. ( 2001; ). Disruption of the interaction of mammalian protein synthesis eukaryotic initiation factor 4B with the poly(A)-binding protein by caspase- and viral protease-mediated cleavages. J Biol Chem 276, 23922–23928.[CrossRef]
    [Google Scholar]
  31. Butsch, M., Hull, S., Wang, Y., Roberts, T. M. & Boris-Lawrie, K. ( 1999; ). The 5′ RNA terminus of spleen necrosis virus contains a novel posttranscriptional control element that facilitates human immunodeficiency virus Rev/RRE-independent Gag production. J Virol 73, 4847–4855.
    [Google Scholar]
  32. Campbell, L. H., Borg, K. T., Haines, J. K., Moon, R. T., Schoenberg, D. R. & Arrigo, S. J. ( 1994; ). Human immunodeficiency virus type 1 Rev is required in vivo for binding of poly(A)-binding protein to Rev-dependent RNAs. J Virol 68, 5433–5438.
    [Google Scholar]
  33. Chaloin, L., Smagulova, F., Hariton-Gazal, E., Briant, L., Loyter, A. & Devaux, C. ( 2007; ). Potent inhibition of HIV-1 replication by backbone cyclic peptides bearing the Rev arginine rich motif. J Biomed Sci 14, 565–584.[CrossRef]
    [Google Scholar]
  34. Chang, D. D. & Sharp, P. A. ( 1989; ). Regulation by HIV Rev depends upon recognition of splice sites. Cell 59, 789–795.[CrossRef]
    [Google Scholar]
  35. Chen, T., Damaj, B. B., Herrera, C., Lasko, P. & Richard, S. ( 1997; ). Self-association of the single-KH-domain family members Sam68, GRP33, GLD-1, and Qk1: role of the KH domain. Mol Cell Biol 17, 5707–5718.
    [Google Scholar]
  36. Chung, H. & Derse, D. ( 2001; ). Binding sites for Rev and ASF/SF2 map to a 55-nucleotide purine-rich exonic element in equine infectious anemia virus RNA. J Biol Chem 276, 18960–18967.[CrossRef]
    [Google Scholar]
  37. Clever, J. L. & Parslow, T. G. ( 1997; ). Mutant human immunodeficiency virus type 1 genomes with defects in RNA dimerization or encapsidation. J Virol 71, 3407–3414.
    [Google Scholar]
  38. Cochrane, A. W., Jones, K. S., Beidas, S., Dillon, P. J., Skalka, A. M. & Rosen, C. A. ( 1991; ). Identification and characterization of intragenic sequences which repress human immunodeficiency virus structural gene expression. J Virol 65, 5305–5313.
    [Google Scholar]
  39. Collier, B. & Gray, N. K. ( 2006; ). Cleavage, a real turn-off? HIV-mediated proteolysis of PABP1. Biochem J 396, e9–e11.[CrossRef]
    [Google Scholar]
  40. Cosson, B., Berkova, N., Couturier, A., Chabelskaya, S., Philippe, M. & Zhouravleva, G. ( 2002; ). Poly(A)-binding protein and eRF3 are associated in vivo in human and Xenopus cells. Biol Cell 94, 205–216.[CrossRef]
    [Google Scholar]
  41. Coyle, J. H., Guzik, B. W., Bor, Y. C., Jin, L., Eisner-Smerage, L., Taylor, S. J., Rekosh, D. & Hammarskjöld, M. L. ( 2003; ). Sam68 enhances the cytoplasmic utilization of intron-containing RNA and is functionally regulated by the nuclear kinase Sik/BRK. Mol Cell Biol 23, 92–103.[CrossRef]
    [Google Scholar]
  42. Cullen, B. R. ( 1992; ). Mechanism of action of regulatory proteins encoded by complex retroviruses. Microbiol Rev 56, 375–394.
    [Google Scholar]
  43. Cullen, B. R. ( 1998a; ). Posttranscriptional regulation by the HIV-1 Rev protein. Semin Virol 8, 327–334.[CrossRef]
    [Google Scholar]
  44. Cullen, B. R. ( 1998b; ). Retroviruses as model systems for the study of nuclear RNA export pathways. Virology 249, 203–210.[CrossRef]
    [Google Scholar]
  45. Cullen, B. R. ( 2003; ). Nuclear mRNA export: insights from virology. Trends Biochem Sci 28, 419–424.[CrossRef]
    [Google Scholar]
  46. D'Agostino, D. M., Felber, B. K., Harrison, J. E. & Pavlakis, G. N. ( 1992; ). The Rev protein of human immunodeficiency virus type 1 promotes polysomal association and translation of gag/pol and vpu/env mRNAs. Mol Cell Biol 12, 1375–1386.
    [Google Scholar]
  47. Daly, T. J., Cook, K. S., Gray, G. S., Maione, T. E. & Rusche, J. R. ( 1989; ). Specific binding of HIV-1 recombinant Rev protein to the Rev-responsive element in vitro. Nature 342, 816–819.[CrossRef]
    [Google Scholar]
  48. Dangel, A. W., Hull, S., Roberts, T. M. & Boris-Lawrie, K. ( 2002; ). Nuclear interactions are necessary for translational enhancement by spleen necrosis virus RU5. J Virol 76, 3292–3300.[CrossRef]
    [Google Scholar]
  49. Dillon, P. J., Nelbock, P., Perkins, A. & Rosen, C. A. ( 1990; ). Function of the human immunodeficiency virus types 1 and 2 Rev proteins is dependent on their ability to interact with a structured region present in env gene mRNA. J Virol 64, 4428–4437.
    [Google Scholar]
  50. Dillon, P. J., Nelbock, P., Perkins, A. & Rosen, C. A. ( 1991; ). Structural and functional analysis of the human immunodeficiency virus type 2 Rev protein. J Virol 65, 445–449.
    [Google Scholar]
  51. Dorman, N. & Lever, A. ( 2000; ). Comparison of viral genomic RNA sorting mechanisms in human immunodeficiency virus type 1 (HIV-1), HIV-2, and Moloney murine leukemia virus. J Virol 74, 11413–11417.[CrossRef]
    [Google Scholar]
  52. D'Souza, V. & Summers, M. F. ( 2005; ). How retroviruses select their genomes. Nat Rev Microbiol 3, 643–655.[CrossRef]
    [Google Scholar]
  53. Emerman, M., Vazeux, R. & Peden, K. ( 1989; ). The rev gene product of the human immunodeficiency virus affects envelope-specific RNA localization. Cell 57, 1155–1165.[CrossRef]
    [Google Scholar]
  54. Fang, J., Kubota, S., Yang, B., Zhou, N., Zhang, H., Godbout, R. & Pomerantz, R. J. ( 2004; ). A DEAD box protein facilitates HIV-1 replication as a cellular co-factor of Rev. Virology 330, 471–480.[CrossRef]
    [Google Scholar]
  55. Fang, J., Acheampong, E., Dave, R., Wang, F., Mukhtar, M. & Pomerantz, R. J. ( 2005; ). The RNA helicase DDX1 is involved in restricted HIV-1 Rev function in human astrocytes. Virology 336, 299–307.[CrossRef]
    [Google Scholar]
  56. Fankhauser, C., Izaurralde, E., Adachi, Y., Wingfield, P. & Laemmli, U. K. ( 1991; ). Specific complex of human immunodeficiency virus type 1 Rev and nucleolar B23 proteins: dissociation by the Rev response element. Mol Cell Biol 11, 2567–2575.
    [Google Scholar]
  57. Farjot, G., Sergeant, A. & Mikaelian, I. ( 1999; ). A new nucleoporin-like protein interacts with both HIV-1 Rev nuclear export signal and CRM-1. J Biol Chem 274, 17309–17317.[CrossRef]
    [Google Scholar]
  58. Felber, B. K., Hadzopoulou-Cladaras, M., Cladaras, C., Copeland, T. & Pavlakis, G. N. ( 1989; ). Rev protein of human immunodeficiency virus type 1 affects the stability and transport of the viral mRNA. Proc Natl Acad Sci U S A 86, 1495–1499.[CrossRef]
    [Google Scholar]
  59. Fischer, U., Meyer, S., Teufel, M., Heckel, C., Luhrmann, R. & Rautmann, G. ( 1994; ). Evidence that HIV-1 Rev directly promotes the nuclear export of unspliced RNA. EMBO J 13, 4105–4112.
    [Google Scholar]
  60. Fischer, U., Huber, J., Boelens, W. C., Mattaj, I. W. & Luhrmann, R. ( 1995; ). The HIV-1 Rev activation domain is a nuclear export signal that accesses an export pathway used by specific cellular RNAs. Cell 82, 475–483.[CrossRef]
    [Google Scholar]
  61. Fridell, R. A., Partin, K. M., Carpenter, S. & Cullen, B. R. ( 1993; ). Identification of the activation domain of equine infectious anemia virus rev. J Virol 67, 7317–7323.
    [Google Scholar]
  62. Fritz, C. C., Zapp, M. L. & Green, M. R. ( 1995; ). A human nucleoporin-like protein that specifically interacts with HIV Rev. Nature 376, 530–533.[CrossRef]
    [Google Scholar]
  63. Fumagalli, S., Totty, N. F., Hsuan, J. J. & Courtneidge, S. A. ( 1994; ). A target for Src in mitosis. Nature 368, 871–874.[CrossRef]
    [Google Scholar]
  64. Furuta, R. A., Sakai, H., Kawamura, M., Tokunaga, K., Hatanaka, M. & Adachi, A. ( 1995; ). Functionality of chimeric Rev proteins of HIV/SIV. Virus Genes 11, 11–14.[CrossRef]
    [Google Scholar]
  65. Gallego, J., Greatorex, J., Zhang, H., Yang, B., Arunachalam, S., Fang, J., Seamons, J., Lea, S., Pomerantz, R. J. & Lever, A. M. L. ( 2003; ). Rev binds specifically to a purine loop in the SL1 region of the HIV-1 leader RNA. J Biol Chem 278, 40385–40391.[CrossRef]
    [Google Scholar]
  66. Garrett, E. D. & Cullen, B. R. ( 1992; ). Comparative analysis of Rev function in human immunodeficiency virus types 1 and 2. J Virol 66, 4288–4294.
    [Google Scholar]
  67. Geballe, A. P. & Gray, M. K. ( 1992; ). Variable inhibition of cell-free translation by HIV-1 transcript leader sequences. Nucleic Acids Res 20, 4291–4297.[CrossRef]
    [Google Scholar]
  68. Greatorex, J. ( 2004; ). The retroviral RNA dimer linkage: different structures may reflect different roles. Retrovirology 1, 22 [CrossRef]
    [Google Scholar]
  69. Greatorex, J., Gallego, J., Varani, G. & Lever, A. ( 2002; ). Structure and stability of wild-type and mutant RNA internal loops from the SL-1 domain of the HIV-1 packaging signal. J Mol Biol 322, 543–557.[CrossRef]
    [Google Scholar]
  70. Greatorex, J. S., Palmer, E. A., Pomerantz, R. J., Dangerfield, J. A. & Lever, A. M. ( 2006; ). Mutation of the Rev-binding loop in the human immunodeficiency virus 1 leader causes a replication defect characterized by altered RNA trafficking and packaging. J Gen Virol 87, 3039–3044.[CrossRef]
    [Google Scholar]
  71. Green, M. R. & Zapp, M. L. ( 1989; ). Human immunodeficiency virus. Revving up gene expression. Nature 338, 200–201.[CrossRef]
    [Google Scholar]
  72. Groom, H. C. T., Anderson, E. C., Dangerfield, J. A. & Lever, A. M. L. ( 2009; ). Rev regulates translation of human immunodeficiency virus type 1 RNAs. J Gen Virol 90, 1141–1147.[CrossRef]
    [Google Scholar]
  73. Hadzopoulou-Cladaras, M., Felber, B. K., Cladaras, C., Athanassopoulos, A., Tse, A. & Pavlakis, G. N. ( 1989; ). The rev (trs/art) protein of human immunodeficiency virus type 1 affects viral mRNA and protein expression via a cis-acting sequence in the env region. J Virol 63, 1265–1274.
    [Google Scholar]
  74. Harris, M. E., Gontarek, R. R., Derse, D. & Hope, T. J. ( 1998; ). Differential requirements for alternative splicing and nuclear export functions of equine infectious anemia virus Rev protein. Mol Cell Biol 18, 3889–3899.
    [Google Scholar]
  75. Harrison, G. P., Miele, G., Hunter, E. & Lever, A. M. ( 1998; ). Functional analysis of the core human immunodeficiency virus type 1 packaging signal in a permissive cell line. J Virol 72, 5886–5896.
    [Google Scholar]
  76. Hartman, T. R., Qian, S., Bolinger, C., Fernandez, S., Schoenberg, D. R. & Boris-Lawrie, K. ( 2006; ). RNA helicase A is necessary for translation of selected messenger RNAs. Nat Struct Mol Biol 13, 509–516.[CrossRef]
    [Google Scholar]
  77. Hayashi, T., Shioda, T., Iwakura, Y. & Shibuta, H. ( 1992; ). RNA packaging signal of human immunodeficiency virus type 1. Virology 188, 590–599.[CrossRef]
    [Google Scholar]
  78. Henao-Mejia, J., Liu, Y., Park, I. W., Zhang, J., Sanford, J. & He, J. J. ( 2009; ). Suppression of HIV-1 Nef translation by Sam68 mutant-induced stress granules and nef mRNA sequestration. Mol Cell 33, 87–96.[CrossRef]
    [Google Scholar]
  79. Hirsch, M. S., Gunthard, H. F., Schapiro, J. M., Brun-Vezinet, F., Clotet, B., Hammer, S. M., Johnson, V. A., Kuritzkes, D. R., Mellors, J. W. & other authors ( 2008; ). Antiretroviral drug resistance testing in adult HIV-1 infection: 2008 recommendations of an International AIDS Society-USA Panel. Clin Infect Dis 47, 266–285.[CrossRef]
    [Google Scholar]
  80. Hope, T. J. ( 1999; ). The ins and outs of HIV Rev. Arch Biochem Biophys 365, 186–191.[CrossRef]
    [Google Scholar]
  81. Hope, T. J., McDonald, D., Huang, X. J., Low, J. & Parslow, T. G. ( 1990; ). Mutational analysis of the human immunodeficiency virus type 1 Rev transactivator: essential residues near the amino terminus. J Virol 64, 5360–5366.
    [Google Scholar]
  82. Houzet, L., Paillart, J. C., Smagulova, F., Maurel, S., Morichaud, Z., Marquet, R. & Mougel, M. ( 2007; ). HIV controls the selective packaging of genomic, spliced viral and cellular RNAs into virions through different mechanisms. Nucleic Acids Res 35, 2695–2704.[CrossRef]
    [Google Scholar]
  83. Hull, S. & Boris-Lawrie, K. ( 2002; ). RU5 of Mason–Pfizer monkey virus 5′ long terminal repeat enhances cytoplasmic expression of human immunodeficiency virus type 1 gag-pol and nonviral reporter RNA. J Virol 76, 10211–10218.[CrossRef]
    [Google Scholar]
  84. Invernizzi, C. F., Xie, B., Richard, S. & Wainberg, M. A. ( 2006; ). PRMT6 diminishes HIV-1 Rev binding to and export of viral RNA. Retrovirology 3, 93 [CrossRef]
    [Google Scholar]
  85. Jan, E., Motzny, C. K., Graves, L. E. & Goodwin, E. B. ( 1999; ). The STAR protein, GLD-1, is a translational regulator of sexual identity in Caenorhabditis elegans. EMBO J 18, 258–269.[CrossRef]
    [Google Scholar]
  86. Jin, Y. & Cowan, J. A. ( 2006; ). Targeted cleavage of HIV Rev response element RNA by metallopeptide complexes. J Am Chem Soc 128, 410–411.[CrossRef]
    [Google Scholar]
  87. Jin, L., Guzik, B. W., Bor, Y. C., Rekosh, D. & Hammarskjold, M. L. ( 2003; ). Tap and NXT promote translation of unspliced mRNA. Genes Dev 17, 3075–3086.[CrossRef]
    [Google Scholar]
  88. Johnson, E. M., Kinoshita, Y., Weinreb, D. B., Wortman, M. J., Simon, R., Khalili, K., Winckler, B. & Gordon, J. ( 2006; ). Role of Purα in targeting mRNA to sites of translation in hippocampal neuronal dendrites. J Neurosci Res 83, 929–943.[CrossRef]
    [Google Scholar]
  89. Johnson, V. A., Brun-Vezinet, F., Clotet, B., Gunthard, H. F., Kuritzkes, D. R., Pillay, D., Schapiro, J. M. & Richman, D. D. ( 2008; ). Update of the drug resistance mutations in HIV-1. Top HIV Med 16, 138–145.
    [Google Scholar]
  90. Jones, A. R., Francis, R. & Schedl, T. ( 1996; ). GLD-1, a cytoplasmic protein essential for oocyte differentiation, shows stage- and sex-specific expression during Caenorhabditis elegans germline development. Dev Biol 180, 165–183.[CrossRef]
    [Google Scholar]
  91. Kahvejian, A., Svitkin, Y. V., Sukarieh, R., M'Boutchou, M. N. & Sonenberg, N. ( 2005; ). Mammalian poly(A)-binding protein is a eukaryotic translation initiation factor, which acts via multiple mechanisms. Genes Dev 19, 104–113.[CrossRef]
    [Google Scholar]
  92. Kaminski, R., Darbinian, N., Sawaya, B. E., Slonina, D., Amini, S., Johnson, E. M., Rappaport, J., Khalili, K. & Darbinyan, A. ( 2008; ). Purα as a cellular co-factor of Rev/RRE-mediated expression of HIV-1 intron-containing mRNA. J Cell Biochem 103, 1231–1245.[CrossRef]
    [Google Scholar]
  93. Katahira, J., Ishizaki, T., Sakai, H., Adachi, A., Yamamoto, K. & Shida, H. ( 1995; ). Effects of translation initiation factor eIF-5A on the functioning of human T-cell leukemia virus type I Rex and human immunodeficiency virus Rev inhibited trans dominantly by a Rex mutant deficient in RNA binding. J Virol 69, 3125–3133.
    [Google Scholar]
  94. Kaye, J. F., Richardson, J. H. & Lever, A. M. ( 1995; ). cis-Acting sequences involved in human immunodeficiency virus type 1 RNA packaging. J Virol 69, 6588–6592.
    [Google Scholar]
  95. Kessler, S. H. & Sachs, A. B. ( 1998; ). RNA recognition motif 2 of yeast Pab1p is required for its functional interaction with eukaryotic translation initiation factor 4G. Mol Cell Biol 18, 51–57.
    [Google Scholar]
  96. Kim, H. & Yin, J. ( 2005; ). Effects of RNA splicing and post-transcriptional regulation on HIV-1 growth: a quantitative and integrated perspective. Syst Biol (Stevenage) 152, 138–152.[CrossRef]
    [Google Scholar]
  97. Kimura, T., Hashimoto, I., Nishikawa, M. & Fujisawa, J. ( 1996; ). A role for Rev in the association of HIV-1 gag mRNA with cytoskeletal β-actin and viral protein expression. Biochimie 78, 1075–1080.[CrossRef]
    [Google Scholar]
  98. Kimura, T., Hashimoto, I., Yamamoto, A., Nishikawa, M. & Fujisawa, J. I. ( 2000; ). Rev-dependent association of the intron-containing HIV-1 gag mRNA with the nuclear actin bundles and the inhibition of its nucleocytoplasmic transport by latrunculin-B. Genes Cells 5, 289–307.[CrossRef]
    [Google Scholar]
  99. Kiyomasu, T., Miyazawa, T., Furuya, T., Shibata, R., Sakai, H., Sakuragi, J., Fukasawa, M., Maki, N., Hasegawa, A. & other authors ( 1991; ). Identification of feline immunodeficiency virus rev gene activity. J Virol 65, 4539–4542.
    [Google Scholar]
  100. Knight, D. M., Flomerfelt, F. A. & Ghrayeb, J. ( 1987; ). Expression of the art/trs protein of HIV and study of its role in viral envelope synthesis. Science 236, 837–840.[CrossRef]
    [Google Scholar]
  101. Konig, R., Zhou, Y., Elleder, D., Diamond, T. L., Bonamy, G. M., Irelan, J. T., Chiang, C. Y., Tu, B. P., De Jesus, P. D. & other authors ( 2008; ). Global analysis of host–pathogen interactions that regulate early-stage HIV-1 replication. Cell 135, 49–60.[CrossRef]
    [Google Scholar]
  102. Kramer-Hammerle, S., Ceccherini-Silberstein, F., Bickel, C., Wolff, H., Vincendeau, M., Werner, T., Erfle, V. & Brack-Werner, R. ( 2005; ). Identification of a novel Rev-interacting cellular protein. BMC Cell Biol 6, 20 [CrossRef]
    [Google Scholar]
  103. Krausslich, H. G. & Welker, R. ( 1996; ). Intracellular transport of retroviral capsid components. Curr Top Microbiol Immunol 214, 25–63.
    [Google Scholar]
  104. Kubota, S., Siomi, H., Satoh, T., Endo, S., Maki, M. & Hatanaka, M. ( 1989; ). Functional similarity of HIV-I rev and HTLV-I rex proteins: identification of a new nucleolar-targeting signal in rev protein. Biochem Biophys Res Commun 162, 963–970.[CrossRef]
    [Google Scholar]
  105. Kubota, S., Adachi, Y., Copeland, T. D. & Oroszlan, S. ( 1995; ). Binding of human prothymosin α to the leucine-motif/activation domains of HTLV-I Rex and HIV-1 Rev. Eur J Biochem 233, 48–54.[CrossRef]
    [Google Scholar]
  106. Kusuhara, K., Anderson, M., Pettiford, S. M. & Green, P. L. ( 1999; ). Human T-cell leukemia virus type 2 Rex protein increases stability and promotes nuclear to cytoplasmic transport of gag/pol and env RNAs. J Virol 73, 8112–8119.
    [Google Scholar]
  107. Lawrence, J. B., Cochrane, A. W., Johnson, C. V., Perkins, A. & Rosen, C. A. ( 1991; ). The HIV-1 Rev protein: a model system for coupled RNA transport and translation. New Biol 3, 1220–1232.
    [Google Scholar]
  108. Lee, J. H., Murphy, S. C., Belshan, M., Sparks, W. O., Wannemuehler, Y., Liu, S., Hope, T. J., Dobbs, D. & Carpenter, S. ( 2006; ). Characterization of functional domains of equine infectious anemia virus Rev suggests a bipartite RNA-binding domain. J Virol 80, 3844–3852.[CrossRef]
    [Google Scholar]
  109. Lee, C. S., Dias, A. P., Jedrychowski, M., Patel, A. H., Hsu, J. L. & Reed, R. ( 2008a; ). Human DDX3 functions in translation and interacts with the translation initiation factor eIF3. Nucleic Acids Res 36, 4708–4718.[CrossRef]
    [Google Scholar]
  110. Lee, J. H., Culver, G., Carpenter, S. & Dobbs, D. ( 2008b; ). Analysis of the EIAV Rev-responsive element (RRE) reveals a conserved RNA motif required for high affinity Rev binding in both HIV-1 and EIAV. PLoS One 3, e2272 [CrossRef]
    [Google Scholar]
  111. Lejbkowicz, F., Goyer, C., Darveau, A., Neron, S., Lemieux, R. & Sonenberg, N. ( 1992; ). A fraction of the mRNA 5′ cap-binding protein, eukaryotic initiation factor 4E, localizes to the nucleus. Proc Natl Acad Sci U S A 89, 9612–9616.[CrossRef]
    [Google Scholar]
  112. Lever, A. M. ( 2007; ). HIV-1 RNA packaging. Adv Pharmacol 55, 1–32.
    [Google Scholar]
  113. Lever, A., Gottlinger, H., Haseltine, W. & Sodroski, J. ( 1989; ). Identification of a sequence required for efficient packaging of human immunodeficiency virus type 1 RNA into virions. J Virol 63, 4085–4087.
    [Google Scholar]
  114. Lewin, B. ( 1997; ). Genes VI, chapter 7, p. 160. New York: Oxford University Press.
  115. Li, J., Tang, H., Mullen, T. M., Westberg, C., Reddy, T. R., Rose, D. W. & Wong-Staal, F. ( 1999; ). A role for RNA helicase A in post-transcriptional regulation of HIV type 1. Proc Natl Acad Sci U S A 96, 709–714.[CrossRef]
    [Google Scholar]
  116. Li, Y., Koike, K., Ohashi, S., Funakoshi, T., Tadano, M., Kobayashi, S., Anzai, K., Shibata, N. & Kobayashi, M. ( 2001; ). Purα protein implicated in dendritic RNA transport interacts with ribosomes in neuronal cytoplasm. Biol Pharm Bull 24, 231–235.[CrossRef]
    [Google Scholar]
  117. Li, J., Liu, Y., Kim, B. O. & He, J. J. ( 2002a; ). Direct participation of Sam68, the 68-kilodalton Src-associated protein in mitosis, in the CRM1-mediated Rev nuclear export pathway. J Virol 76, 8374–8382.[CrossRef]
    [Google Scholar]
  118. Li, J., Liu, Y., Park, I. W. & He, J. J. ( 2002b; ). Expression of exogenous Sam68, the 68-kilodalton SRC-associated protein in mitosis, is able to alleviate impaired Rev function in astrocytes. J Virol 76, 4526–4535.[CrossRef]
    [Google Scholar]
  119. Lucke, S., Grunwald, T. & Überla, K. ( 2005; ). Reduced mobilization of Rev-responsive element-deficient lentiviral vectors. J Virol 79, 9359–9362.[CrossRef]
    [Google Scholar]
  120. Luo, Y., Yu, H. & Peterlin, B. M. ( 1994; ). Cellular protein modulates effects of human immunodeficiency virus type 1 Rev. J Virol 68, 3850–3856.
    [Google Scholar]
  121. Ma, J., Rong, L., Zhou, Y., Roy, B. B., Lu, J., Abrahamyan, L., Mouland, A. J., Pan, Q. & Liang, C. ( 2008; ). The requirement of the DEAD-box protein DDX24 for the packaging of human immunodeficiency virus type 1 RNA. Virology 375, 253–264.[CrossRef]
    [Google Scholar]
  122. Madore, S. J., Tiley, L. S., Malim, M. H. & Cullen, B. R. ( 1994; ). Sequence requirements for Rev multimerization in vivo. Virology 202, 186–194.[CrossRef]
    [Google Scholar]
  123. Maldarelli, F., Martin, M. A. & Strebel, K. ( 1991; ). Identification of posttranscriptionally active inhibitory sequences in human immunodeficiency virus type 1 RNA: novel level of gene regulation. J Virol 65, 5732–5743.
    [Google Scholar]
  124. Malim, M. H. & Cullen, B. R. ( 1993; ). Rev and the fate of pre-mRNA in the nucleus: implications for the regulation of RNA processing in eukaryotes. Mol Cell Biol 13, 6180–6189.
    [Google Scholar]
  125. Malim, M. H., Bohnlein, S., Fenrick, R., Le, S. Y., Maizel, J. V. & Cullen, B. R. ( 1989a; ). Functional comparison of the Rev trans-activators encoded by different primate immunodeficiency virus species. Proc Natl Acad Sci U S A 86, 8222–8226.[CrossRef]
    [Google Scholar]
  126. Malim, M. H., Bohnlein, S., Hauber, J. & Cullen, B. R. ( 1989b; ). Functional dissection of the HIV-1 Rev trans-activator – derivation of a trans-dominant repressor of Rev function. Cell 58, 205–214.[CrossRef]
    [Google Scholar]
  127. Malim, M. H., McCarn, D. F., Tiley, L. S. & Cullen, B. R. ( 1991; ). Mutational definition of the human immunodeficiency virus type 1 Rev activation domain. J Virol 65, 4248–4254.
    [Google Scholar]
  128. Mancuso, V. A., Hope, T. J., Zhu, L., Derse, D., Phillips, T. & Parslow, T. G. ( 1994; ). Posttranscriptional effector domains in the Rev proteins of feline immunodeficiency virus and equine infectious anemia virus. J Virol 68, 1998–2001.
    [Google Scholar]
  129. Martarano, L., Stephens, R., Rice, N. & Derse, D. ( 1994; ). Equine infectious anemia virus trans-regulatory protein Rev controls viral mRNA stability, accumulation, and alternative splicing. J Virol 68, 3102–3111.
    [Google Scholar]
  130. Martineau, Y., Derry, M. C., Wang, X., Yanagiya, A., Berlanga, J. J., Shyu, A. B., Imataka, H., Gehring, K. & Sonenberg, N. ( 2008; ). The poly(A)-binding protein-interacting protein 1 binds to eIF3 to stimulate translation. Mol Cell Biol 28, 6658–6667.[CrossRef]
    [Google Scholar]
  131. Matsumoto, K., Wassarman, K. M. & Wolffe, A. P. ( 1998; ). Nuclear history of a pre-mRNA determines the translational activity of cytoplasmic mRNA. EMBO J 17, 2107–2121.[CrossRef]
    [Google Scholar]
  132. Mazarin, V., Gourdou, I., Querat, G., Sauze, N., Audoly, G., Vitu, C., Russo, P., Rousselot, C., Filippi, P. & Vigne, R. ( 1990; ). Subcellular localization of rev-gene product in visna virus-infected cells. Virology 178, 305–310.[CrossRef]
    [Google Scholar]
  133. McLaren, M., Asai, K. & Cochrane, A. ( 2004; ). A novel function for Sam68: enhancement of HIV-1 RNA 3′ end processing. RNA 10, 1119–1129.[CrossRef]
    [Google Scholar]
  134. Meggio, F., D'Agostino, D. M., Ciminale, V., Chieco-Bianchi, L. & Pinna, L. A. ( 1996; ). Phosphorylation of HIV-1 Rev protein: implication of protein kinase CK2 and pro-directed kinases. Biochem Biophys Res Commun 226, 547–554.[CrossRef]
    [Google Scholar]
  135. Miele, G., Mouland, A., Harrison, G. P., Cohen, E. & Lever, A. M. ( 1996; ). The human immunodeficiency virus type 1 5′ packaging signal structure affects translation but does not function as an internal ribosome entry site structure. J Virol 70, 944–951.
    [Google Scholar]
  136. Mills, N. L., Daugherty, M. D., Frankel, A. D. & Guy, R. K. ( 2006; ). An α-helical peptidomimetic inhibitor of the HIV-1 Rev–RRE interaction. J Am Chem Soc 128, 3496–3497.[CrossRef]
    [Google Scholar]
  137. Modem, S. & Reddy, T. R. ( 2008; ). An anti-apoptotic protein, Hax-1, inhibits the HIV-1 rev function by altering its sub-cellular localization. J Cell Physiol 214, 14–19.[CrossRef]
    [Google Scholar]
  138. Modem, S., Badri, K. R., Holland, T. C. & Reddy, T. R. ( 2005; ). Sam68 is absolutely required for Rev function and HIV-1 production. Nucleic Acids Res 33, 873–879.[CrossRef]
    [Google Scholar]
  139. Moehle, K., Athanassiou, Z., Patora, K., Davidson, A., Varani, G. & Robinson, J. A. ( 2007; ). Design of β-hairpin peptidomimetics that inhibit binding of α-helical HIV-1 Rev protein to the Rev response element RNA. Angew Chem Int Ed Engl 46, 9101–9104.[CrossRef]
    [Google Scholar]
  140. Mohr, I., Pe'ery, T. & Matthews, M. B. ( 2007; ). Protein synthesis and translational control during viral infection. In Translational Control in Biology and Medicine, pp. 545–595. Edited by M. B. Mathews, N. Sonenberg & J. W. B. Hershey. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  141. Munroe, D. & Jacobson, A. ( 1990; ). mRNA poly(A) tail, a 3′ enhancer of translational initiation. Mol Cell Biol 10, 3441–3455.
    [Google Scholar]
  142. Najera, I., Krieg, M. & Karn, J. ( 1999; ). Synergistic stimulation of HIV-1 Rev-dependent export of unspliced mRNA to the cytoplasm by hnRNP A1. J Mol Biol 285, 1951–1964.[CrossRef]
    [Google Scholar]
  143. Najib, S., Rodriguez-Bano, J., Rios, M. J., Muniain, M. A., Goberna, R. & Sanchez-Margalet, V. ( 2005; ). Sam68 is tyrosine phosphorylated and recruited to signalling in peripheral blood mononuclear cells from HIV infected patients. Clin Exp Immunol 141, 518–525.[CrossRef]
    [Google Scholar]
  144. Olsen, H. S., Cochrane, A. W., Dillon, P. J., Nalin, C. M. & Rosen, C. A. ( 1990; ). Interaction of the human immunodeficiency virus type 1 Rev protein with a structured region in env mRNA is dependent on multimer formation mediated through a basic stretch of amino acids. Genes Dev 4, 1357–1364.[CrossRef]
    [Google Scholar]
  145. Otero, G. C., Harris, M. E., Donello, J. E. & Hope, T. J. ( 1998; ). Leptomycin B inhibits equine infectious anemia virus Rev and feline immunodeficiency virus rev function but not the function of the hepatitis B virus posttranscriptional regulatory element. J Virol 72, 7593–7597.
    [Google Scholar]
  146. Paillart, J. C., Shehu-Xhilaga, M., Marquet, R. & Mak, J. ( 2004; ). Dimerization of retroviral RNA genomes:an inseparable pair. Nat Rev Microbiol 2, 461–472.[CrossRef]
    [Google Scholar]
  147. Parkin, N. T., Cohen, E. A., Darveau, A., Rosen, C., Haseltine, W. & Sonenberg, N. ( 1988; ). Mutational analysis of the 5′ non-coding region of human immunodeficiency virus type 1: effects of secondary structure on translation. EMBO J 7, 2831–2837.
    [Google Scholar]
  148. Perales, C., Carrasco, L. & Gonzáles, M. E. ( 2005; ). Regulation of HIV-1 env mRNA translation by Rev protein. Biochim Biophys Acta 1743, 169–175.[CrossRef]
    [Google Scholar]
  149. Perkins, A., Cochrane, A. W., Ruben, S. M. & Rosen, C. A. ( 1989; ). Structural and functional characterization of the human immunodeficiency virus Rev protein. J Acquir Immune Defic Syndr 2, 256–263.
    [Google Scholar]
  150. Phillips, T. R., Lamont, C., Konings, D. A., Shacklett, B. L., Hamson, C. A., Luciw, P. A. & Elder, J. H. ( 1992; ). Identification of the Rev transactivation and Rev-responsive elements of feline immunodeficiency virus. J Virol 66, 5464–5471.
    [Google Scholar]
  151. Pollard, V. W. & Malim, M. H. ( 1998; ). The HIV-1 Rev protein. Annu Rev Microbiol 52, 491–532.[CrossRef]
    [Google Scholar]
  152. Poole, E., Strappe, P., Mok, H. P., Hicks, R. & Lever, A. M. ( 2005; ). HIV-1 Gag–RNA interaction occurs at a perinuclear/centrosomal site; analysis by confocal microscopy and FRET. Traffic 6, 741–755.[CrossRef]
    [Google Scholar]
  153. Powell, D. M., Amaral, M. C., Wu, J. Y., Maniatis, T. & Greene, W. C. ( 1997; ). HIV Rev-dependent binding of SF2/ASF to the Rev response element: possible role in Rev-mediated inhibition of HIV RNA splicing. Proc Natl Acad Sci U S A 94, 973–978.[CrossRef]
    [Google Scholar]
  154. Poznansky, M., Lever, A., Bergeron, L., Haseltine, W. & Sodroski, J. ( 1991; ). Gene transfer into human lymphocytes by a defective human immunodeficiency virus type 1 vector. J Virol 65, 532–536.
    [Google Scholar]
  155. Reddy, T. R. ( 2000; ). A single point mutation in the nuclear localization domain of Sam68 blocks the Rev/RRE-mediated transactivation. Oncogene 19, 3110–3114.[CrossRef]
    [Google Scholar]
  156. Reddy, T. R., Xu, W., Mau, J. K., Goodwin, C. D., Suhasini, M., Tang, H., Frimpong, K., Rose, D. W. & Wong-Staal, F. ( 1999; ). Inhibition of HIV replication by dominant negative mutants of Sam68, a functional homolog of HIV-1 Rev. Nat Med 5, 635–642.[CrossRef]
    [Google Scholar]
  157. Reddy, T. R., Xu, W. D. & Wong-Staal, F. ( 2000; ). General effect of Sam68 on Rev/Rex regulated expression of complex retroviruses. Oncogene 19, 4071–4074.[CrossRef]
    [Google Scholar]
  158. Reddy, T. R., Suhasini, M., Xu, W., Yeh, L. Y., Yang, J. P., Wu, J., Artzt, K. & Wong-Staal, F. ( 2002; ). A role for KH domain proteins (Sam68-like mammalian proteins and quaking proteins) in the post-transcriptional regulation of HIV replication. J Biol Chem 277, 5778–5784.[CrossRef]
    [Google Scholar]
  159. Resnick, R. J., Taylor, S. J., Lin, Q. & Shalloway, D. ( 1997; ). Phosphorylation of the Src substrate Sam68 by Cdc2 during mitosis. Oncogene 15, 1247–1253.[CrossRef]
    [Google Scholar]
  160. Richardson, J. H., Child, L. A. & Lever, A. M. ( 1993; ). Packaging of human immunodeficiency virus type 1 RNA requires cis-acting sequences outside the 5′ leader region. J Virol 67, 3997–4005.
    [Google Scholar]
  161. Roberts, T. M. & Boris-Lawrie, K. ( 2000; ). The 5′ RNA terminus of spleen necrosis virus stimulates translation of nonviral mRNA. J Virol 74, 8111–8118.[CrossRef]
    [Google Scholar]
  162. Rosin-Arbesfeld, R., Yaniv, A. & Gazit, A. ( 2000; ). Suboptimal splice sites of equine infectious anaemia virus control Rev responsiveness. J Gen Virol 81, 1265–1272.
    [Google Scholar]
  163. Ruhl, M., Himmelspach, M., Bahr, G. M., Hammerschmid, F., Jaksche, H., Wolff, B., Aschauer, H., Farrington, G. K., Probst, H. & other authors ( 1993; ). Eukaryotic initiation factor 5A is a cellular target of the human immunodeficiency virus type 1 Rev activation domain mediating trans-activation. J Cell Biol 123, 1309–1320.[CrossRef]
    [Google Scholar]
  164. Russell, R. S., Liang, C. & Wainberg, M. A. ( 2004; ). Is HIV-1 RNA dimerization a prerequisite for packaging? Yes, no, probably? Retrovirology 1, 23 [CrossRef]
    [Google Scholar]
  165. Saccomanno, L., Loushin, C., Jan, E., Punkay, E., Artzt, K. & Goodwin, E. B. ( 1999; ). The STAR protein QKI-6 is a translational repressor. Proc Natl Acad Sci U S A 96, 12605–12610.[CrossRef]
    [Google Scholar]
  166. Sakai, H., Shibata, R., Sakuragi, J., Kiyomasu, T., Kawamura, M., Hayami, M., Ishimoto, A. & Adachi, A. ( 1991; ). Compatibility of rev gene activity in the four groups of primate lentiviruses. Virology 184, 513–520.[CrossRef]
    [Google Scholar]
  167. Sanchez-Velar, N., Udofia, E. B., Yu, Z. & Zapp, M. L. ( 2004; ). hRIP, a cellular cofactor for Rev function, promotes release of HIV RNAs from the perinuclear region. Genes Dev 18, 23–34.[CrossRef]
    [Google Scholar]
  168. Sargan, D. R. & Bennet, I. D. ( 1989; ). A transcriptional map of visna virus: definition of the second intron structure suggests a rev-like gene product. J Gen Virol 70, 1995–2006.[CrossRef]
    [Google Scholar]
  169. Schatz, O., Oft, M., Dascher, C., Schebesta, M., Rosorius, O., Jaksche, H., Dobrovnik, M., Bevec, D. & Hauber, J. ( 1998; ). Interaction of the HIV-1 Rev cofactor eukaryotic initiation factor 5A with ribosomal protein L5. Proc Natl Acad Sci U S A 95, 1607–1612.[CrossRef]
    [Google Scholar]
  170. Schneider, R., Campbell, M., Nasioulas, G., Felber, B. K. & Pavlakis, G. N. ( 1997; ). Inactivation of the human immunodeficiency virus type 1 inhibitory elements allows Rev-independent expression of Gag and Gag/protease and particle formation. J Virol 71, 4892–4903.
    [Google Scholar]
  171. Schoborg, R. V. & Clements, J. E. ( 1994; ). The Rev protein of visna virus is localized to the nucleus of infected cells. Virology 202, 485–490.[CrossRef]
    [Google Scholar]
  172. Schwartz, S., Campbell, M., Nasioulas, G., Harrison, J., Felber, B. K. & Pavlakis, G. N. ( 1992; ). Mutational inactivation of an inhibitory sequence in human immunodeficiency virus type 1 results in Rev-independent Gag expression. J Virol 66, 7176–7182.
    [Google Scholar]
  173. Shi, X. P., Yin, K. C. & Waxman, L. ( 1997; ). Effects of inhibitors of RNA and protein synthesis on the subcellular distribution of the eukaryotic translation initiation factor, eIF-5A, and the HIV-1 Rev protein. Biol Signals 6, 143–149.[CrossRef]
    [Google Scholar]
  174. Shuck-Lee, D., Chen, F. F., Willard, R., Raman, S., Ptak, R., Hammarskjöld, M. L. & Rekosh, D. ( 2008; ). Heterocyclic compounds that inhibit Rev–RRE function and human immunodeficiency virus type 1 replication. Antimicrob Agents Chemother 52, 3169–3179.[CrossRef]
    [Google Scholar]
  175. Sieliwanowicz, B. ( 1987; ). The influence of poly(A)-binding proteins on translation of poly(A)+ RNA in a cell-free system from embryo axes of dry pea seeds. Biochim Biophys Acta 908, 54–59.[CrossRef]
    [Google Scholar]
  176. Sodroski, J., Goh, W. C., Rosen, C. A., Dayton, A., Terwilliger, E. & Haseltine, W. ( 1986; ). A second post-transcriptional trans-activator gene required for HTLV-III replication. Nature 321, 412–417.[CrossRef]
    [Google Scholar]
  177. Sorge, J., Ricci, W. & Hughes, S. H. ( 1983; ). cis-Acting RNA packaging locus in the 115-nucleotide direct repeat of Rous sarcoma virus. J Virol 48, 667–675.
    [Google Scholar]
  178. Soros, V. B., Carvajal, H. V., Richard, S. & Cochrane, A. W. ( 2001; ). Inhibition of human immunodeficiency virus type 1 Rev function by a dominant-negative mutant of Sam68 through sequestration of unspliced RNA at perinuclear bundles. J Virol 75, 8203–8215.[CrossRef]
    [Google Scholar]
  179. Southgate, C., Zapp, M. L. & Green, M. R. ( 1990; ). Activation of transcription by HIV-1 Tat protein tethered to nascent RNA through another protein. Nature 345, 640–642.[CrossRef]
    [Google Scholar]
  180. Sparks, W. O., Dorman, K. S., Liu, S. & Carpenter, S. ( 2008; ). Naturally arising point mutations in non-essential domains of equine infectious anemia virus Rev alter Rev-dependent nuclear-export activity. J Gen Virol 89, 1043–1048.[CrossRef]
    [Google Scholar]
  181. Stephens, R. M., Derse, D. & Rice, N. R. ( 1990; ). Cloning and characterization of cDNAs encoding equine infectious anemia virus tat and putative Rev proteins. J Virol 64, 3716–3725.
    [Google Scholar]
  182. Strahm, Y., Fahrenkrog, B., Zenklusen, D., Rychner, E., Kantor, J., Rosbach, M. & Stutz, F. ( 1999; ). The RNA export factor Gle1p is located on the cytoplasmic fibrils of the NPC and physically interacts with the FG-nucleoporin Rip1p, the DEAD-box protein Rat8p/Dbp5p and a new protein Ymr 255p. EMBO J 18, 5761–5777.[CrossRef]
    [Google Scholar]
  183. Swanson, C. M. & Malim, M. H. ( 2006; ). Retrovirus RNA trafficking: from chromatin to invasive genomes. Traffic 7, 1440–1450.[CrossRef]
    [Google Scholar]
  184. Swanson, C. M., Puffer, B. A., Ahmad, K. M., Doms, R. W. & Malim, M. H. ( 2004; ). Retroviral mRNA nuclear export elements regulate protein function and virion assembly. EMBO J 23, 2632–2640.[CrossRef]
    [Google Scholar]
  185. Tan, W., Schalling, M., Zhao, C., Luukkonen, M., Nilsson, M., Fenyo, E. M., Pavlakis, G. N. & Schwartz, S. ( 1996; ). Inhibitory activity of the equine infectious anemia virus major 5′ splice site in the absence of Rev. J Virol 70, 3645–3658.
    [Google Scholar]
  186. Tang, H., McDonald, D., Middlesworth, T., Hope, T. J. & Wong-Staal, F. ( 1999; ). The carboxyl terminus of RNA helicase A contains a bidirectional nuclear transport domain. Mol Cell Biol 19, 3540–3550.
    [Google Scholar]
  187. Tange, T. O., Jensen, T. H. & Kjems, J. ( 1996; ). In vitro interaction between human immunodeficiency virus type 1 Rev protein and splicing factor ASF/SF2-associated protein, p32. J Biol Chem 271, 10066–10072.[CrossRef]
    [Google Scholar]
  188. Tarun, S. Z., Jr & Sachs, A. B. ( 1995; ). A common function for mRNA 5′ and 3′ ends in translation initiation in yeast. Genes Dev 9, 2997–3007.[CrossRef]
    [Google Scholar]
  189. Taylor, S. J. & Shalloway, D. ( 1994; ). An RNA-binding protein associated with Src through its SH2 and SH3 domains in mitosis. Nature 368, 867–871.[CrossRef]
    [Google Scholar]
  190. Tiley, L. S. & Cullen, B. R. ( 1992; ). Structural and functional analysis of the visna virus Rev-response element. J Virol 66, 3609–3615.
    [Google Scholar]
  191. Tiley, L. S., Malim, M. H. & Cullen, B. R. ( 1991; ). Conserved functional organization of the human immunodeficiency virus type 1 and visna virus Rev proteins. J Virol 65, 3877–3881.
    [Google Scholar]
  192. Tomonaga, K., Miyazawa, T., Kawaguchi, Y., Kohmoto, M., Inoshima, Y. & Mikami, T. ( 1994; ). Comparison of the Rev transactivation of feline immunodeficiency virus in feline and non-feline cell lines. J Vet Med Sci 56, 199–201.[CrossRef]
    [Google Scholar]
  193. Toohey, K. L. & Haase, A. T. ( 1994; ). The rev gene of visna virus is required for productive infection. Virology 200, 276–280.[CrossRef]
    [Google Scholar]
  194. Trubetskoy, A. M., Okenquist, S. A. & Lenz, J. ( 1999; ). R region sequences in the long terminal repeat of a murine retrovirus specifically increase expression of unspliced RNAs. J Virol 73, 3477–3483.
    [Google Scholar]
  195. Urcuqui-Inchima, S., Castano, M. E., Hernandez-Verdun, D., St-Laurent, G., III & Kumar, A. ( 2006; ). Nuclear factor 90, a cellular dsRNA binding protein inhibits the HIV Rev-export function. Retrovirology 3, 83 [CrossRef]
    [Google Scholar]
  196. Venkatesh, L. K. & Chinnadurai, G. ( 1990; ). Mutants in a conserved region near the carboxy-terminus of HIV-1 Rev identify functionally important residues and exhibit a dominant negative phenotype. Virology 178, 327–330.[CrossRef]
    [Google Scholar]
  197. Watts, N. R., Sackett, D. L., Ward, R. D., Miller, M. W., Wingfield, P. T., Stahl, S. S. & Steven, A. C. ( 2000; ). HIV-1 Rev depolymerizes microtubules to form stable bilayered rings. J Cell Biol 150, 349–360.[CrossRef]
    [Google Scholar]
  198. Weichselbraun, I., Farrington, G. K., Rusche, J. R., Bohnlein, E. & Hauber, J. ( 1992; ). Definition of the human immunodeficiency virus type 1 Rev and human T-cell leukemia virus type I Rex protein activation domain by functional exchange. J Virol 66, 2583–2587.
    [Google Scholar]
  199. Wen, W., Meinkoth, J. L., Tsien, R. Y. & Taylor, S. S. ( 1995; ). Identification of a signal for rapid export of proteins from the nucleus. Cell 82, 463–473.[CrossRef]
    [Google Scholar]
  200. Wolff, B., Sanglier, J. J. & Wang, Y. ( 1997; ). Leptomycin B is an inhibitor of nuclear export: inhibition of nucleo-cytoplasmic translocation of the human immunodeficiency virus type 1 (HIV-1) Rev protein and Rev-dependent mRNA. Chem Biol 4, 139–147.[CrossRef]
    [Google Scholar]
  201. Wu, B. Y., Woffendin, C., Duckett, C. S., Ohno, T. & Nabel, G. J. ( 1995; ). Regulation of human retroviral latency by the NF-κB/IκB family: inhibition of human immunodeficiency virus replication by IκB through a Rev-dependent mechanism. Proc Natl Acad Sci U S A 92, 1480–1484.[CrossRef]
    [Google Scholar]
  202. Xie, B., Invernizzi, C. F., Richard, S. & Wainberg, M. A. ( 2007; ). Arginine methylation of the human immunodeficiency virus type 1 Tat protein by PRMT6 negatively affects Tat interactions with both cyclin T1 and the Tat transactivation region. J Virol 81, 4226–4234.[CrossRef]
    [Google Scholar]
  203. Xu, Y., Reddy, T. R., Fischer, W. H. & Wong-Staal, F. ( 1996; ). A novel hnRNP specifically interacts with HIV-1 RRE RNA. J Biomed Sci 3, 82–91.[CrossRef]
    [Google Scholar]
  204. Ye, Y. & Li, B. ( 2006; ). 1′S-1′-acetoxychavicol acetate isolated from Alpinia galanga inhibits human immunodeficiency virus type 1 replication by blocking Rev transport. J Gen Virol 87, 2047–2053.[CrossRef]
    [Google Scholar]
  205. Yedavalli, V. S., Neuveut, C., Chi, Y. H., Kleiman, L. & Jeang, K. T. ( 2004; ). Requirement of DDX3 DEAD box RNA helicase for HIV-1 Rev–RRE export function. Cell 119, 381–392.[CrossRef]
    [Google Scholar]
  206. Yu, Z., Sanchez-Velar, N., Catrina, I. E., Kittler, E. L., Udofia, E. B. & Zapp, M. L. ( 2005; ). The cellular HIV-1 Rev cofactor hRIP is required for viral replication. Proc Natl Acad Sci U S A 102, 4027–4032.[CrossRef]
    [Google Scholar]
  207. Zamore, P. D., Zapp, M. L. & Green, M. R. ( 1990; ). Gene expression. RNA binding: βs and basics. Nature 348, 485–486.[CrossRef]
    [Google Scholar]
  208. Zanelli, C. F. & Valentini, S. R. ( 2007; ). Is there a role for eIF5A in translation? Amino Acids 33, 351–358.[CrossRef]
    [Google Scholar]
  209. Zapp, M. L. & Green, M. R. ( 1989; ). Sequence-specific RNA binding by the HIV-1 Rev protein. Nature 342, 714–716.[CrossRef]
    [Google Scholar]
  210. Zapp, M. L., Hope, T. J., Parslow, T. G. & Green, M. R. ( 1991; ). Oligomerization and RNA binding domains of the type 1 human immunodeficiency virus Rev protein: a dual function for an arginine-rich binding motif. Proc Natl Acad Sci U S A 88, 7734–7738.[CrossRef]
    [Google Scholar]
  211. Zhang, J., Liu, Y., Henao, J., Rugeles, M. T., Li, J., Chen, T. & He, J. J. ( 2005; ). Requirement of an additional Sam68 domain for inhibition of human immunodeficiency virus type 1 replication by Sam68 dominant negative mutants lacking the nuclear localization signal. Gene 363, 67–76.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.011460-0
Loading
/content/journal/jgv/10.1099/vir.0.011460-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error