1887

Abstract

Internal ribosome entry site (IRES)-mediated translation of input viral RNA is the initial required step for the replication of the positive-stranded genome of hepatitis C virus (HCV). We have shown previously the importance of the GCAC sequence near the initiator AUG within the stem and loop IV (SLIV) region in mediating ribosome assembly on HCV RNA. Here, we demonstrate selective inhibition of HCV-IRES-mediated translation using short hairpin (sh)RNA targeting the same site within the HCV IRES. sh-SLIV showed significant inhibition of viral RNA replication in a human hepatocellular carcinoma (Huh7) cell line harbouring a HCV monocistronic replicon. More importantly, co-transfection of infectious HCV–H77s RNA and sh-SLIV in Huh7.5 cells successfully demonstrated a significant decrease in viral RNA in HCV cell culture. Additionally, we report, for the first time, the targeted delivery of sh-SLIV RNA into mice liver using Sendai virosomes and demonstrate selective inhibition of HCV-IRES-mediated translation. Results provide the proof of concept that Sendai virosomes could be used for the efficient delivery of shRNAs into liver tissue to block HCV replication.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.010579-0
2009-08-01
2019-11-14
Loading full text...

Full text loading...

/deliver/fulltext/jgv/90/8/1812.html?itemId=/content/journal/jgv/10.1099/vir.0.010579-0&mimeType=html&fmt=ahah

References

  1. Ali, N., Pruijn, G. J. M., Kenan, D. J., Keene, J. D. & Siddiqui, A. ( 2000; ). Human La antigen is required for the hepatitis C virus internal ribosome entry site (IRES)-mediated translation. J Biol Chem 275, 27531–27540.
    [Google Scholar]
  2. Bagai, S., Puri, A., Blumenthal, R. & Sarkar, D. P. ( 1993; ). Hemagglutinin-neuraminidase enhances F protein-mediated membrane fusion of reconstituted Sendai virus envelopes with cells. J Virol 67, 3312–3318.
    [Google Scholar]
  3. Bhattacharyya, S., Verma, B., Pandey, G. & Das, S. ( 2008; ). The structure and function of a cis-acting element located upstream of the IRES that influences Coxsackievirus B3 RNA translation. Virology 377, 345–354.[CrossRef]
    [Google Scholar]
  4. Brown, E. A., Zhang, H., Ping, L. H. & Lemon, S. M. ( 1992; ). Secondary structure of the 5′ nontranslated regions of hepatitis C virus and pestivirus. Nucleic Acids Res 20, 5041–5045.[CrossRef]
    [Google Scholar]
  5. Brummelkamp, T. R., Bernards, R. & Agami, R. ( 2002; ). A system for stable expression of short interfering RNAs in mammalian cells. Science 296, 550–553.[CrossRef]
    [Google Scholar]
  6. Dasgupta, A., Das, S., Izumi, R., Venkatesan, A. & Barat, B. ( 2004; ). Targeting internal ribosome entry site (IRES)-mediated translation to block hepatitis C and other RNA viruses. FEMS Microbiol Lett 234, 189–199.
    [Google Scholar]
  7. Frese, M., Barth, K., Kaul, A., Lohmann, V., Schwärzle, V. & Bartenschlager, R. ( 2003; ). Hepatitis C virus RNA replication is resistant to tumor necrosis factor-α. J Gen Virol 84, 1253–1259.[CrossRef]
    [Google Scholar]
  8. Hellen, C. U. & Sarnow, P. ( 2001; ). Internal ribosome entry sites in eukaryotic mRNA molecules. Genes Dev 15, 1593–1612.[CrossRef]
    [Google Scholar]
  9. Iwasaki, Y., Ikeda, H., Araki, Y., Osawa, T., Kita, K., Ando, M., Shimoe, T., Takaguchi, K., Hashimoto, N. & other authors ( 2006; ). Limitation of combination therapy of interferon and ribavirin for older patients with chronic hepatitis C. Hepatology 43, 54–63.[CrossRef]
    [Google Scholar]
  10. Kanda, T., Steele, R., Ray, R. & Ray, B. R. ( 2007; ). Small interfering RNA targeted to hepatitis C virus 5′ nontranslated region exerts potent antiviral effect. J Virol 81, 669–676.[CrossRef]
    [Google Scholar]
  11. Kapadia, S. B., Brideau-Andersen, A. & Chisari, F. V. ( 2003; ). Interference of hepatitis C virus RNA replication by short interfering RNAs. Proc Natl Acad Sci U S A 100, 2014–2018.[CrossRef]
    [Google Scholar]
  12. Kronke, J., Kittler, R., Buchholz, F., Windish, M. P., Pietschmann, T., Bartenshclager, R. & Frese, M. ( 2004; ). Alternative approaches for efficient inhibition of hepatitis C virus RNA replication by small interfering RNAs. J Virol 78, 3436–3446.[CrossRef]
    [Google Scholar]
  13. Mondal, T., Ray, U., Manna, A. K., Gupta, R., Roy, S. & Das, S. ( 2008; ). Structural determinant of human La protein critical for internal initiation of translation of hepatitis C virus RNA. J Virol 82, 11927–11938.[CrossRef]
    [Google Scholar]
  14. Nijhara, R., Jana, S. S., Goswami, S. K., Rana, A., Majumdar, S. S., Kumar, V. & Sarkar, D. P. ( 2001; ). Sustained activation of mitogen-activated protein kinases and activator protein 1 by the hepatitis B virus X protein in mouse hepatocytes in vivo. J Virol 75, 10348–10358.[CrossRef]
    [Google Scholar]
  15. Pawlotsky, J. M., Chevaliez, S. & McHutchison, J. G. ( 2007; ). The hepatitis C virus life cycle as a target for new antiviral therapies. Gastroenterology 132, 1979–1998.[CrossRef]
    [Google Scholar]
  16. Pudi, R., Abhiman, S., Srinivasan, N. & Das, S. ( 2003; ). Hepatitis C virus internal ribosome entry site-mediated translation is stimulated by specific interaction of independent regions of human La autoantigen. J Biol Chem 278, 12231–12240.[CrossRef]
    [Google Scholar]
  17. Pudi, R., Srinivasan, P. & Das, S. ( 2004; ). La protein binding at the GCAC site near the initiator AUG facilitates the ribosomal assembly on the hepatitis C virus RNA to influence internal ribosome entry site-mediated translation. J Biol Chem 279, 29879–29888.[CrossRef]
    [Google Scholar]
  18. Pudi, R., Sudhamoni, S. R. & Das, S. ( 2005; ). A peptide derived from RRM2 of human La protein binds to hepatitis C virus IRES, prevents ribosomal assembly and inhibits internal initiation of translation. J Virol 79, 9842–9853.[CrossRef]
    [Google Scholar]
  19. Ramani, K., Hassan, M. Q., Venkaiah, B., Hasnain, S. E. & Sarkar, D. P. ( 1998; ). Site-specific gene delivery in vivo through engineered Sendai viral envelopes. Proc Natl Acad Sci U S A 95, 11886–11890.[CrossRef]
    [Google Scholar]
  20. Randall, G., Grakoui, A. & Rice, C. M. ( 2003; ). Clearance of replicating hepatitis C virus replicon RNAs in cell culture by small interfering RNAs. Proc Natl Acad Sci U S A 100, 235–240.[CrossRef]
    [Google Scholar]
  21. Roy, S., Gupta, N., Subramanian, N., Mondal, T., Banerjea, A. C. & Das, S. ( 2008; ). Sequence specific cleavage of hepatitis C virus RNA by DNAzymes: inhibition of viral RNA translation and replication. J Gen Virol 89, 1579–1586.[CrossRef]
    [Google Scholar]
  22. Saito, I., Miyamura, A., Ohbayashi, H., Harada, H., Katayama, T., Kikuchi, S., Watanabe, Y., Koi, S., Onji, M. & other authors ( 1990; ). Hepatitis C virus infection is associated with the development of hepatocellular carcinoma. Proc Natl Acad Sci U S A 87, 6547–6549.[CrossRef]
    [Google Scholar]
  23. Tan, S.-L., Pause, A., Shi, Y. & Sonenberg, N. ( 2002; ). Hepatitis C therapeutics: current status and emerging strategies. Nat Rev Drug Discov 1, 867–881.[CrossRef]
    [Google Scholar]
  24. Trepanier, J. B., Tanner, J. E. & Alfieri, C. ( 2006; ). Oligonucleotide-based therapeutic options against hepatitis C virus infection. Antivir Ther 11, 273–287.
    [Google Scholar]
  25. Trowbridge, R. & Gowans, E. J. ( 1998; ). Identification of novel sequences at the 5′ terminus of the hepatitis C virus genome. J Viral Hepat 5, 95–98.[CrossRef]
    [Google Scholar]
  26. Wang, C., Sarnow, P. & Siddiqui, A. ( 1993; ). Translation of human hepatitis C virus RNA in cultured cells is mediated by an internal ribosome-binding mechanism. J Virol 67, 3338–3344.
    [Google Scholar]
  27. Wang, Q., Contag, H. C., Ilves, H., Johnston, H. B. & Kaspar, L. R. ( 2005; ). Small hairpin RNAs efficiently inhibit hepatitis C IRES-mediated gene expression in human tissue culture cells and a mouse model. Mol Ther 12, 562–568.[CrossRef]
    [Google Scholar]
  28. Wilson, J. A., Jayasena, S., Khvorova, A., Sabatinos, S., Rodrigue-Gervais, I., Arya, S., Sarangi, F., Harris-Brandts, M., Beaulieu, S. & Richardson, C. D. ( 2003; ). RNA interference blocks gene expression and RNA synthesis from hepatitis C replicons propagated in human liver cells. Proc Natl Acad Sci U S A 100, 2783–2788.[CrossRef]
    [Google Scholar]
  29. Yi, M., Ma, Y., Yates, J. & Lemon, S. M. ( 2006; ). Compensatory mutations in E1, p7, NS2 and NS3 enhance yields of cell culture-infectious inter-genotypic chimeric hepatitis C virus. J Virol 81, 629–638.
    [Google Scholar]
  30. Zhang, J., Yamada, O., Sakamoto, T., Yoshida, H., Iwai, T., Matsushita, Y., Shimamura, H., Araki, H. & Shimotohno, K. ( 2004; ). Down-regualtion of viral relocation by adenoviral-mediated expression of siRNA against cellular cofactors for hepatitis C virus. Virology 320, 135–143.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.010579-0
Loading
/content/journal/jgv/10.1099/vir.0.010579-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error