1887

Abstract

The search for a ‘third’-generation smallpox vaccine has resulted in the development and characterization of several vaccine candidates. A significant barrier to acceptance is the absence of challenge models showing induction of correlates of protective immunity against variola virus. In this light, virus neutralization provides one of few experimental methods to show specific ‘’ activity of vaccines against variola virus. Here, we provide characterization of the ability of a modified vaccinia virus Ankara vaccine to induce variola virus-neutralizing antibodies, and we provide comparison with the neutralization elicited by standard Dryvax vaccination.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.010553-0
2009-08-01
2019-11-15
Loading full text...

Full text loading...

/deliver/fulltext/jgv/90/8/1962.html?itemId=/content/journal/jgv/10.1099/vir.0.010553-0&mimeType=html&fmt=ahah

References

  1. Antoine, G., Scheiflinger, F., Dorner, F. & Falkner, F. G. ( 1998; ). The complete genomic sequence of the modified vaccinia Ankara strain: comparison with other orthopoxviruses. Virology 244, 365–396.[CrossRef]
    [Google Scholar]
  2. Davies, D. H., Liang, X., Hernandez, J. E., Randall, A., Hirst, S., Mu, Y., Romero, K. M., Nguyen, T. T., Kalantari-Dehaghi, M. & other authors ( 2005a; ). Profiling the humoral immune response to infection by using proteome microarrays: high-throughput vaccine and diagnostic antigen discovery. Proc Natl Acad Sci U S A 102, 547–552.[CrossRef]
    [Google Scholar]
  3. Davies, D. H., McCausland, M. M., Valdez, C., Huynh, D., Hernandez, J. E., Mu, Y., Hirst, S., Villarreal, L., Felgner, P. L., Crotty, S. & other authors ( 2005b; ). Vaccinia virus H3L envelope protein is a major target of neutralizing antibodies in humans and elicits protection against lethal challenge in mice. J Virol 79, 11724–11733.[CrossRef]
    [Google Scholar]
  4. Davies, D. H., Molina, D. M., Wrammert, J., Miller, J., Hirst, S., Mu, Y., Pablo, J., Unal, B., Nakajima-Sasaki, R. & other authors ( 2007; ). Proteome-wide analysis of the serological response to vaccinia and smallpox. Proteomics 7, 1678–1686.[CrossRef]
    [Google Scholar]
  5. Davies, D. H., Wyatt, L. S., Newman, F. K., Earl, P. L., Chun, S., Hernandez, J. E., Molina, D. M., Hirst, S., Moss, B. & other authors ( 2008; ). Antibody profiling by proteome microarray reveals the immunogenicity of the attenuated smallpox vaccine modified vaccinia virus Ankara is comparable to that of Dryvax. J Virol 82, 652–663.[CrossRef]
    [Google Scholar]
  6. Fogg, C. N., Americo, J. L., Lustig, S., Huggins, J. W., Smith, S. K., Damon, I., Resch, W., Earl, P. L., Klinman, D. M., Moss, B. & other authors ( 2007; ). Adjuvant-enhanced antibody responses to recombinant proteins correlates with protection of mice and monkeys to orthopoxvirus challenges. Vaccine 25, 2787–2799.[CrossRef]
    [Google Scholar]
  7. Frey, S. E., Newman, F. K., Cruz, J., Shelton, W. B., Tennant, J. M., Polach, T., Rothman, A. L., Kennedy, J. S., Wolff, M. & other authors ( 2002; ). Dose-related effects of smallpox vaccine. N Engl J Med 346, 1275–1280.[CrossRef]
    [Google Scholar]
  8. Frey, S. E., Newman, F. K., Yan, L., Lottenbach, K. R. & Belshe, R. B. ( 2003; ). Response to smallpox vaccine in persons immunized in the distant past. JAMA 289, 3295–3299.[CrossRef]
    [Google Scholar]
  9. Frey, S. E., Newman, F. K., Kennedy, J. S., Sobek, V., Ennis, F. A., Hill, H., Yan, L. K., Chaplin, P., Vollmar, J. & other authors ( 2007; ). Clinical and immunologic responses to multiple doses of IMVAMUNE (modified vaccinia Ankara) followed by Dryvax challenge. Vaccine 25, 8562–8573.[CrossRef]
    [Google Scholar]
  10. Karem, K. L., Reynolds, M., Braden, Z., Lou, G., Bernard, N., Patton, J. & Damon, I. K. ( 2005; ). Characterization of acute-phase humoral immunity to monkeypox: use of immunoglobulin M enzyme-linked immunosorbent assay for detection of monkeypox infection during the 2003 North American outbreak. Clin Diagn Lab Immunol 12, 867–872.
    [Google Scholar]
  11. Lane, J. M. & Goldstein, J. ( 2003; ). Adverse events occurring after smallpox vaccination. Semin Pediatr Infect Dis 14, 189–195.[CrossRef]
    [Google Scholar]
  12. Lawrence, S. J., Lottenbach, K. R., Newman, F. K., Buller, R. M., Bellone, C. J., Chen, J. J., Cohen, G. H., Eisenberg, R. J., Belshe, R. B. & other authors ( 2007; ). Antibody responses to vaccinia membrane proteins after smallpox vaccination. J Infect Dis 196, 220–229.[CrossRef]
    [Google Scholar]
  13. Lehmann, E. L. ( 1975; ). Nonparametrics: Statistical Methods Based On Ranks. San Francisco: Holden-Day Inc.
  14. Meyer, H., Sutter, G. & Mayr, A. ( 1991; ). Mapping of deletions in the genome of the highly attenuated vaccinia virus MVA and their influence on virulence. J Gen Virol 72, 1031–1038.[CrossRef]
    [Google Scholar]
  15. Newman, F. K., Frey, S. E., Blevins, T. P., Mandava, M., Bonifacio, A., Jr, Yan, L. & Belshe, R. B. ( 2003; ). Improved assay to detect neutralizing antibody following vaccination with diluted or undiluted vaccinia (Dryvax) vaccine. J Clin Microbiol 41, 3154–3157.[CrossRef]
    [Google Scholar]
  16. Panchanathan, V., Chaudhri, G. & Karupiah, G. ( 2008; ). Correlates of protective immunity in poxvirus infection: where does antibody stand? Immunol Cell Biol 86, 80–86.[CrossRef]
    [Google Scholar]
  17. Pütz, M. M., Alberini, I., Midgley, C. M., Manini, I., Montomoli, E. & Smith, G. L. ( 2005; ). Prevalence of antibodies to Vaccinia virus after smallpox vaccination in Italy. J Gen Virol 86, 2955–2960.[CrossRef]
    [Google Scholar]
  18. Pütz, M. M., Midgley, C. M., Law, M. & Smith, G. L. ( 2006; ). Quantification of antibody responses against multiple antigens of the two infectious forms of Vaccinia virus provides a benchmark for smallpox vaccination. Nat Med 12, 1310–1315.[CrossRef]
    [Google Scholar]
  19. Stickl, H., Hochstein-Mintzel, V., Mayr, A., Huber, H. C., Schafer, H. & Holzner, A. ( 1974; ). MVA vaccination against smallpox: clinical tests with an attenuated live vaccinia virus strain (MVA). Dtsch Med Wochenschr 99, 2386–2392 (in German).[CrossRef]
    [Google Scholar]
  20. Tscharke, D. C., Karupiah, G., Zhou, J., Palmore, T., Irvine, K. R., Haeryfar, S. M., Williams, S., Sidney, J., Sette, A. & other authors ( 2005; ). Identification of poxvirus CD8+ T cell determinants to enable rational design and characterization of smallpox vaccines. J Exp Med 201, 95–104.[CrossRef]
    [Google Scholar]
  21. Viner, K. M. & Isaacs, S. N. ( 2005; ). Activity of vaccinia virus-neutralizing antibody in the sera of smallpox vaccinees. Microbes Infect 7, 579–583.[CrossRef]
    [Google Scholar]
  22. Vollmar, J., Arndtz, N., Eckl, K. M., Thomsen, T., Petzold, B., Mateo, L., Schlereth, B., Handley, A., King, L. & other authors ( 2006; ). Safety and immunogenicity of IMVAMUNE, a promising candidate as a third generation smallpox vaccine. Vaccine 24, 2065–2070.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.010553-0
Loading
/content/journal/jgv/10.1099/vir.0.010553-0
Loading

Data & Media loading...

Supplements

In (a) (Dryvax), (b) (MVA IM) and (c) (MVA SC), the capacity of individuals' sera, at various dilutions ( -axis), is plotted against the percentage neutralization of variola virus ( -axis) [ PDF] (600 KB)

PDF

Vaccine treatment group comparisons at pre- and post-vaccination at 60 and 90 % neutralization [ PDF] (33 KB)

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error